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Introduction

�Resonances and close encounters
play a key role in:

� Circumstellar dust disk evolution

� Low energy spacecraft trajectories

�Current research importance

� Extrasolar planets may be detectable from
their “signatures” in dust disks

� Mission trajectories consuming little fuel
can be designed
• routes from Earth orbit to lunar orbit and beyond

• a tour of Jupiter’s moons
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Planet Detection

Circumstellar dust structures may reveal planets

Source: NASA, the George Mason University, and the Joint Astronomy Center (Hawaii)
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Low Energy Transfers

GEO to Moon Orbit Transfer
Seen in Geocentric Inertial Frame

TOF = 63 days
∆V = 1211 m/s
1 Day Tick Marks

EarthMoon’s
Orbit
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Low Energy Transfers
Low Energy Tour of Jupiter’s Moons

Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 
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Common Link
� Consider a dust particle and a spacecraft.

� Gravity acts upon both primarily through the action of
resonances and close encounters with other bodies
=⇒ complicated conservative dynamics

� Add a significant perturbation

• dust: dissipative radiation forces and radiation pressure

• spacecraft: impulsive maneuvers or continuous low-thrust

=⇒ even more complicated!

� Good news:
Similar tools from nonlinear dynamics can be brought to
bear on both.
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Outline

�Dust Orbital Evolution

� Review problem
• Gaps in the theory

� Apply dynamical systems techniques
• Break up N -body problem into 3-body subproblems

• Phase space structures governing transport

• Goal: statistical quantities (e.g., rates)
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Outline

�Spacecraft Trajectory Design

� Apply same techniques
• View as optimal control problem

• Goal: minimize fuel consumption (∆V )

• Constraint: time of flight is reasonable
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Dust Orbital Evolution
� Radiation forces affecting a small particle are

parameterized by

β =
radiation pressure force

stellar gravitation force
∝ 1

D

•Radiation pressure

M? → M?(1− β)

•Poynting-Robertson drag (PR drag)

ȧ, ė ∝ −β

where a = semimajor axis and e = eccentricity of particle

� No planets ⇒ orbital decay from 1 AU ∼ 10,000 years
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Dust Orbital Evolution
� Planets present ⇒ trapping into mean motion reso-

nances (MMRs) and gravitational scattering via close
encounters

• “Trapped”: PR drag is counterbalanced by resonant gravita-
tional perturbations

• Exterior MMRs most important

• Smaller β ⇒ trapped in MMRs easier, stay trapped longer

• Resonance capture probability depends on e and argument of
pericenter (Lazzaro, Sicardy, Roques, and Greenberg [1994])
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Dust Orbital Evolution
� Numerical simulations verify that dust grains get

temporarily captured in MMRs creating a ring structure
– the circumstellar disk.

Source: Dermott, Jayaraman, Xu, Gustafson, and Liou [1994]
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Dust Orbital Evolution
Particles are trapped in a MMR only temporarily.
Some may migrate starward toward another MMR.

Source: Liou and Zook [1996]
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Dust Orbital Evolution
� Some increase in eccentricity and collide with the star.

Source: Roques, Scholl, Sicardy, and Smith [1994]
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Dust Orbital Evolution
� Consider the evolution of a ring around β Pictoris.

Source: Roques, Scholl, Sicardy, and Smith [1994]
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Dust Orbital Evolution
� Many particles become trapped in MMRs.

Source: Roques, Scholl, Sicardy, and Smith [1994]
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Dust Orbital Evolution
� Others are scattered by the planet to great distances.

Source: Roques, Scholl, Sicardy, and Smith [1994]
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Gaps in the Theory
� A variety of behaviors are not well understood.
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Gaps in the Theory
� Dissipative effects combined with resonance phenomena

are known to lead to complex dynamics
(Lazzaro, Sicardy, Roques, and Greenberg [1994]).

� Much progress has occurred in recent years, but there
are still gaps in the theory which need addressing.

� In particular, the related phenomena of jumping
between resonances with a planet during migration
toward a star and the outcomes of close encounters
with planets have not been considered in any theory
of dust orbital evolution. (Dermott, Grogan, Durda,
Jayaraman, Kehoe, Kortenkamp, and Wyatt [2001]).
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Transport near a MMR
� Analytical studies of capture into resonance have been

performed (e.g., Beaugé and Ferraz-Mello [1994]).
Evolution near a resonance is modeled by a pendulum-
like Hamiltonian with slowly varying parameters.
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Transport near a MMR
� As slowly varying parameters change, the homoclinic or-

bits generically break up, and particles may get captured
into the resonance region or pass out of it.
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Transport near a MMR
� Questions motivating such study are:

• Is capture into resonance possible?

•What is the probability of capture into resonance?

•What is the average time spent within a resonance?

� Much progress has been made in this area (e.g., Wisdom
[1982,1983], Borderies and Goldreich [1984]).

� But study has focused on the local dynamics around a
single resonance.
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Transport between MMRs
� Instead of looking at each MMR in isolation, our view

is to consider the entire global phase space picture of
all MMRs.

• Only in the global setting can one compute the transport rates
between different MMRs.

� First step: consider the conservative (Hamiltonian)
planar circular restricted three-body problem
(PCRTBP)
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Transport between MMRs
Recall PCRTBP: motion of a particle in the gravitational
field of two larger bodies in circular motion.

• View in rotating frame =⇒ time-independent
=⇒ constant energy E

S JL1 L2

Exterior
Region (X)

Interior (Sun)
 Region (S)

Jupiter
Region (J)

Forbidden
Region

Rotating frame: different regions of motion at energy E.
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Transport between MMRs
Study Poincaré surface of section at fixed energy E,
reducing system to a 2-dimensional area preserving map.

z

P(z)

Poincaré surface of section
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Transport between MMRs
In such a system, the natural transport is well under-
stood as the movement of trajectories among resonances
(see Meiss [1992], Schroer and Ott [1997]).
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Transport between MMRs
We can compute the resonance regions for the PCRTBP.
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Transport between MMRs
� The transport problem:

Suppose the p : q MMR has an initial population of
N(p:q) points. The goal of our transport description
is to determine the population of each MMR after
t iterations
(see MacKay, Meiss, and Percival [1984]).

� In order to leave the p : q MMR, a point must fall in
the exit lobe of either the left or right turnstile. There
is a turnstile in only one island of the chain of |p − q|
islands.
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Transport between MMRs
A direct transition from a p : q to a p′ : q′ MMR is pos-
sible only if the exit lobe of a p : q turnstile overlaps
with the entry lobe of a p′ : q′ turnstile.
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Close Encounters
For a particle near the planet-crossing critical curve, the
possibility for a close encounter with the planet be-
comes possible.
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Close Encounters
This is mediated by tubes of transit orbits,
heading toward (or away from) the planetary region.

• the stable and unstable manifolds of periodic orbits about L1

and L2 (see Koon, Lo, Marsden, SDR [2000])

Sun L2 orbit
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Forbidden
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Capture
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In phase space (schematic) In position space
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Close Encounters
A particle may pass by the planet or be
temporarily captured in orbit about the planet.
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Close Encounters
� Poincaré section: tube cross-sections are closed curves.

Particles inside curves move toward or away from Jupiter
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Close Encounters
� Same Poincaré section: plot resonance regions.

2:3 exterior MMR with Jupiter

33



Close Encounters
� Regions of overlap lead to close encounters.

Regions of overlap occur
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Statistical Quantities
� Using this lobe dynamics approach (see Wiggins [1992]),

several statistical quantities of interest can be computed
as a function of planetary mass and particle energy.

• average trapping time in a p : q MMR

• flux entering p : q MMR from p′ : q′ MMR
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Drag Perturbed Case
� This approach must be augmented to consider PR drag

(β > 0).

• Little theory is known regarding the effect of drag on
Hamiltonian systems.

• Kirk, Marsden, and Silber [1996] suggest the use of Hamilto-
nian methods even in the presence of drag is promising.

• Numerical evidence suggests some phase space structure gov-
erning transport of dust between MMRs persists even for large
β (Roques, Scholl, Sicardy, and Smith [1994]).
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Drag Perturbed Case
� Particles migrate to different energies.

• Ė < 0 in interior region ⇒ collide with star
Ė can be ± in exterior region
Liou, Zook, and Jackson [1995]

� Remnants of conservative phase space structure likely
survive.

• e.g., boundaries defining resonance regions, turnstiles

� For small β > 0, symmetry will be broken

• e.g., motion tends starward

=⇒ More numerical experiments and theory needed
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Trajectory Design
� Using the same dynamics, spacecraft trajectories can be

designed

• Use natural dynamics to lessen propellant consumption

� Consider a transfer from Earth orbit to lunar orbit

• Use PCRTBP as model

• Bollt and Meiss [1995]: targeting through recurrence

• Schroer and Ott [1997]: targeting passes between MMRs

� Current work: seek intersections between MMRs and
tubes leading to ballistic capture by the moon

• Take full advantage of all known phase space structures
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Trajectory Design
� Results: much shorter transfer times than previous

authors for only slightly more ∆V
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Trajectories from a circular Earth orbit (r=59669 km) to a stable lunar orbit

Hohmann transfer
∆V = 1220 m/s

TOF = 6.6 days 

Present Work

Schroer & 
Ott [1997]

    Bollt & 
Meiss [1995]
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Trajectory Design
� Compare with Bollt and Meiss [1995]

• A tenth of the time for only 100 m/s more

Current Result Bollt and Meiss [1995]

65 days, ∆V = 860 m/s 748 days, ∆V = 750 m/s

TOF = 65 days
∆V = 860 m/s
1 Day Tick Marks

Earth Moon
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Trajectory Design
� One can consider jumping between resonances of two

3-body systems.

• Decompose the N -body problem into successive coupled 3-
body problems (Gomez, Koon, Lo, Marsden, Masdemont,
SDR [2001]).
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Trajectory Design
� Consider a trajectory to tour the moons of Jupiter

• Begin in an eccentric orbit with perijove at Callisto’s orbit

• Suppose one wants to visit and orbit each of the moons

• Using a standard patched-conics approach, the ∆V necessary
may be prohibitively high

� Preliminary work suggests such a tour may be realizable
for very little ∆V by jumping between MMRs of different
moons and effecting ballistic captures
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Trajectory Design
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Trajectory Design
� For this tour: ∆V = 20 m/s, but TOF is a few years

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 
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Trajectory Design
� As seen in the case of the Earth to lunar orbit transfer,

time of flight can decrease dramatically with slightly in-
creased ∆V

� More work needs to be done to determine the time-of-
flight vs. ∆V curve using this approach.
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The End
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