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Motivation: application to real data

Many systems defined from data or large-scale simulations
— experimental measurements, observations

e.g., from fluid dynamics, biology, social sciences
Aperiodic, finite-time, finite resolution

— in general, no fixed points, periodic orbits, or other invariant sets
(or their stable and unstable manifolds) to organize phase space



Motivation: application to real data

Perhaps can find appropriate analogs to the objects; adapt previous
results to ths setting

Try some numerical explorations; see what merit furthers study



Chaotic phase space transport via lobe dynamics

As our dynamical system, we consider a discrete map'
f M — M,

eg., [ = gbi*T, where M is a differentiable, orientable,
two-dimensional manifold e.g., R?, S°

To understand the transport of points under the map
f, we consider the invariant manifolds of unstable
fixed points

Let p;,2 = 1, ..., N, denote a collection of saddle-type
hyperbolic fixed points for f.

IFollowing Rom-Kedar and Wiggins [1990]




Partition phase space into regions

Natural way to partition phase space
Pieces of W"(p;) and W?*(p;) partition M.
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Unstable and stable manifolds in red and green, resp.



Partition phase space into regions

e Intersection of unstable and stable manifolds define boundaries.




Partition phase space into regions

e These boundaries divide the phase space into regions.




Label mobile subregions: ‘atoms’ of transport

Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (..., R3, R3, [R1], R, Ro, .. .)




Primary intersection points (pips) and boundaries

q is a primary intersection point (pip), ¢ is not a pip.




Primary intersection points (pips) and boundaries

Suppose W"(p;) and W?*(p;) intersect in the pip q.
Define B = Ul|p;, q] U S|pj;, q| as a boundary between
“two sides,” R; and R».

\B = Ulpi.q] US[pj,q]j

R



Lobes: the mobile subregions

Let qo,q1 € W*p;) [ YW?(p;) be two adjacent pips,
i.e., there are no other pips on Ulqy, ¢1] and S|q, ¢1].
The region interior to U|qy, ¢1] | S|qo, 1] is a lobe.

Lobe Ulg0.491]




Lobe dynamics: transport across a boundary B

f~q) is a pip. [ is orientation-preserving = there's at
least one pip on U[f'(q), q] where the W*(p;), W*(p;)
intersection is topologically transverse.

Pi



Lobe dynamics: transport across a boundary B

Ulf~Yq),qlJS[f q), q| forms boundary of two lobes;
one in Iy, labeled L (1), or equivalently (|Ry], R>),
where f((|R1], Ro)) = (Ry,|Ro]), etc. for Ly (1)

Ly (1) Ry




Lobe dynamics: transport across a boundary B

Under one iteration of f, only points in L;s(1) can
move from R; into Ry by crossing B, etc.

['he two lobes L 5(1) and Lo (1) are called a turnstile.

Ly (1) Ry
I q

P Lo F(Lai(1)) p;

J (L 2(1))

/g



Lobe dynamics: transport across a boundary B

Essence of lobe dynamics: the dynamics associated
with crossing B is reduced to the dynamics of
the turnstile lobes associated with 5.

Ly (1) Ry
S (L1(1))

d

J (Lo (D) bj



Identifying atoms of transport by itinerary

In a complicated system, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.



Identifying atoms of transport by itinerary

. and lobes
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Significant amount of fine, filamentary structure.



Identifying atoms of transport by itinerary

e.g., with three regions { R, Ry, R3},
label lobe intersections accordingly.
Denote the intersection (R3, |Ro]) ()([R2], R1) by (R3, |Ral, R;)

([R2], R1)

/

(Rs, [Ra], R1) =

(Rs3, [R2] )ﬂ [R2], R1)

(Rs, [R2])




Identifying atoms of transport by itinerary

Longer itineraries...



Identifying atoms of transport by itinerary

([R2], R1, R5)

(R2, R3, [R2])

... correspond to smaller pieces of phase space; horseshoe dynamics, etc



Lobe Dynamics: example

rest. 3-body problem: chaotic sea contains unstable fixed points.
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Compute a boundary
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Transport btwn Two Regions

The evolution of a lobe of species S into R9

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Physical Review Letters



Transport btwn Two Regions

Species Distribution: Species S1 in Region Ft2

Il F. , = flux of species S, into region R, on the nth iterate
[ | T1 5= total amount of S1 contained in R2 immediately after the nth iterate

Phase Space Volume

1 10
n = lterate of Poincare Map



Lobe dynamics: fluid example

Fluid example: time-periodic Stokes flow

streamlines tracer blob

Lid-driven cavity flow
Model for microfluidic mixer

System has parameter 7, which we treat as a bifurcation parameter
— critical point 77 = 1; above and next few slides show Tf> 1

Computations by Mohsen Gheisaricha and Mark Stremler (Virginia Tech)



Lobe dynamics: fluid example

Fluid example: Poincaré map

some invariant manifolds of saddles



Lobe dynamics: fluid example

Fluid example: Poincaré map

regions and lobes labeled



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at t = 0



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at t =5



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

some invariant manifolds of saddles



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at ¢t = 10



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at t = 15



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob and manifolds



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at t = 20



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

material blob at t = 25



Stable/unstable manifolds and lobes in fluids

Fluid example: Poincaré map

Saddle manifolds and lobe dynamics provide template for motion



Stable/unstable manifolds and lobes in fluids

Concentration variance; a measure of homogenization

OrF

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
0 25 50 75 100

Homogenization has two exponential rates: slower one related to lobes



Braiding of stirrers

Large-scale braiding provides the faster scale
— and an alternative point-of-view



Thurston-Nielsen classification theorem

Thurston (1988) Bull. Am. Math. Soc.

A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.0.):  the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has dense orbits, Markov partition with tran-
sition matrix A, topological entropy hpn(g) = log(Appr(A)), where
App(A) > 1 = Perron-Frobenius eigenvalue of A (iii) reducible: ¢
contains both f.o. and pA regions

hN computed from ‘braid word’, e.g., 0_109

log(App(A)) provides a lower bound on the
true topological entropy

I.e., non-trivial material lines grow like £ ~ {y\",
where A > Ay



Identifying ‘ghost rods’: periodic points

tracer blob for 74 > 1

For 7 > 1, groups of elliptic and saddle periodic

points of period 3
— streamlines around groups resemble fluid mo-

tion around a solid rod =-
At 7y =1, points merge into parabolic points

Below 7¢ < 1, periodic points vanish



Identifying ‘ghost rods’: periodic points

Poincaré section for 7y > 1

For 7 > 1, groups of elliptic and saddle periodic

points of period 3
— streamlines around groups resemble fluid mo-

tion around a solid rod =-
At 7y =1, points merge into parabolic points

Below 7¢ < 1, periodic points vanish



Identifying ‘ghost rods’: periodic points

Poincaré section for 7y > 1

Periodic points of period 3 = act as ‘ghost rods’
Their braid = Ay = 0.96242 from TNCT

Actual hg,, ~ 0.964
= hTy is an excellent lower bound




Identifying ‘ghost rods’: periodic points

_7 E I ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! ! I
0 25 50 75 100

Homogenization has two exponential rates: slower one related to lobes

Fast rate due to braiding of ‘ghost rods’!



Topological entropy continuity across critical point

1.00 -

0.95 -
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topological entropy as a function of 7



Identifying ‘ghost rods’?

Poincaré section for 7r < 1 = no obvious structure!

Note the absence of any elliptical islands
No periodic orbits of low period were found

Is the phase space featureless?



Almost-invariant set (AlS) approach

Take probabilistic point of view (recall, e.g., Oliver Junge's talk)
Partition phase space into loosely coupled regions

AISs ~ “Leaky” regions with a long residence time?

3-body problem phase space is divided into several invariant and almost-invariant sets.

Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Almost-invariant set (AlS) approach

Create box partition of phase space B = { By, ... B}, with ¢ large

Consider a ¢-by-q transition (Ulam) matrix, P, for our dynamical
system, where

P m(B; N f~1(By))
W = , ;
m(B;)
the transition probability from B; to B; using, e.g., | = ¢§+T

B;

¢~ (B;)
=
B;N¢ '(B;))

P approximates our dynamical system via a finite state Markov chain.




Almost-invariant set (AlS) approach

A set B is called almost invariant over the interval [t,t + T if

_m(BN¢~'(B))

~ 1.

Can maximize value of p over all possible combinations of sets B € B.

In practice, AIS or relatedly, almost-cyclic sets (ACS), identified via
(of eigenvalues with |\| & 1) of P or graph-partitioning

Appropriate for non-autonomous, aperiodic, finite-time settings



Identifying ‘ghost rods’: almost-cyclic sets

Return to 74 > 1 case, where periodic points and manifolds exist
Agreement between AlS boundaries and manifolds of periodic points

Known previously® and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for 7r < 1 = no obvious structure!

Return to Tr < 1 case, where no periodic orbits of low period known

Is the phase space featureless?

_ o Ty . , t+7
Consider transition matrix P, 7 induced by Poincaré map ¢, !



Identifying ‘ghost rods’: almost-cyclic sets

Top six eigenvalues for 7y = 0.99 < 7



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

Three-component AlS made of 3 almost-cyclic sets (ACSs) of period 3
ACS effectively replace compact region bounded by saddle manifolds

Also a remnant of the global ‘stable and unstable manifolds’ of the
saddle points, even there are no more saddle points



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

. . . t+
Movie shown is second eigenvector for P, Tfort € 0,7¢)



Identifying ‘ghost rods’: almost-cyclic sets

RS

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid

— Even though the theorems require exactly periodic points!

— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.




Topological entropy vs. bifurcation parameter

1.00 -

0.95 -

0.85 0.90 095 7f 1.00 1.05

topological entropy as a function of 7

hN shown for ACS braid on 3 strands



Eigenvalues/eigenvectors vs. bifurcation parameter
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Movie shows change in eigenvector
branch, marked with ‘-o-" above, as pa-

rameter decreases from a to f =



Bifurcation of ACSs

For example, braid on 13 strands for 7p = (.92
_ _ _ LTy
Movie shown is second eigenvector for P, fort € [0,7¢)

Thurson-Nielsen for this braid provides lower bound on topological entropy



Bifurcation of ACSs
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Bifurcation of ACSs

representation of braid



Sequence of ACS braids bounds entropy

T S0y
0.98T i
0.961- 16 strands 3 strands |
13 strands
0.94- .
L
/ 10 strands
0.92- |
—— 5 -
—— h
0.9+ |
8 strands T hb'ra,z'd
0 \ \ \ \ \ \ \
'808.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Tf

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists



Aperiodic, finite-time setting

Data-driven, finite-time, aperiodic setting
How do we get at transport?

Recall the flow, x — gb?T(az)

o)



Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

t+1
_ do} dgf Js2(t) + O( 15|12

q)ttoJrT(x + 0x)

X+ 0x Sx(ty+T)

6X(l‘()x

x \/\/\/ e



Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

t+1
_ do} dgf Js2(t) + O( 15|12




Invariant manifold analogs: FTLE-LCS approach

The finite-time Lyapunov exponent (FTLE),
1 dgbt—i_T( )
T
—1

measures the maximum stretching rate over the interval 1" of trajectories
starting near the point x at time ¢

Ridges of 0? are candidate hyperbolic codim-1 surfaces; finite-time
analogs of stable/unstable manifolds; Lagrangian coherent structures”

cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005



Invariant manifold analogs: FTLE-LCS approach




Invariant manifold analogs: FTLE-LCS approach

FTLE: 0.00 1.36 271 407 5.43 6759 5.14 8.50
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Invariant manifold analogs: FTLE-LCS approach

We can define the FTLE for Riemannian manifolds®

| t+T H
1
log | max

[T | y0 HYH

1
aér(:lz) = —1In

|

ngt—l—TH .

with y a small perturbation in the tangent space at x.

A

p3
Lekien & Ross [2010] Chaos

P;




Transport barriers: LCS

Ridges correspond to dynamical barriers® or Lagrangian coherent struc-

tures (LCS): repelling surfaces for T' > 0, attracting for T' < 0

cylinder Moebius strip

Each frame has a different initial time ¢

Lekien & Ross [2010] Chaos



Atmospheric flows: Antarctic polar vortex

ozone data



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)



Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS



Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting



Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Hurricane Andrea, 2007

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]



Atmospheric flows and lobe dynamics

Hurricane Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates



Coherent sets and set-based definition of FTLE

Consider, e.g., a flow gb?T in (z1,19) € R?.

Treat the evolution of set B C R? as evolution of two random variables
X1 and X9 defined by probability density function f(xzy,x9), initially

uniform on B, [ = ﬁ)ﬁg, with X'p the characteristic function of B.

Under the action of the flow gb?T, f is mapped to Pf where P is the
associated Perron-Frobenius operator.

Let I(f) be the covariance of f and I(Pf) the covariance of Pf.

i
o~ o(B)

B
Deformation of a disk under the flow during [t, ¢ + T'|




Coherent sets and set-based definition of FTLE

Definition. The covariance-based FTLE of B is

\/)\maaj
o1(B.T) =l <¢AW )

Reduces to usual definition of FTLE in the limit that the linearization
approximation (i.e., line-stretching method) is valid

il
o~ o(B)

B
Deformation of a disk under the flow during [t, ¢ + T'|




Coherent sets and set-based definition of FTLE

The coherence of a set B during [t,t + T]is o7(B,t,T).
A set B is almost-coherent during [t,t + T if 07(B,t,T) ~ 0.

Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

This definition also can identify non-mixing translating sets.

Values of o;(B,t,T) determine the family of sets of various
degrees of coherence.

Need to set a heuristic threshold on the value of o7(B, t, T) to determine
coherent sets.

Notice, coherent sets will be separated by ridges of high FTLE, i.e., LCS



Coherent sets in lid-driven cavity flow

FTLE from line-stretching (conventional) during [0, 7]



q

Coherent sets in lid-driven cavity flow
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FTLE from covariance-based approach during |0, 7]



Coherent sets in lid-driven cavity flow

= | |
0 7 4

Sets of coherences o7(0,7¢) < 1.6



Coherent sets in lid-driven cavity flow
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Compare with AIS from second eigenvector of P
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Coherent sets in the atmosphere

600

300 |

-300 ¢

-600 :
-600 -300 0 300 600

FTLE from covariance during 24 hours starting 09:00 1 May 2007



Coherent sets in the atmosphere

Coherent sets during 24 hours starting 09:00 1 May 2007



Final words on chaotic transport

What are robust descriptions of transport which work in
data-driven aperiodic, finite-time settings?

Possibilities: finite-time lobe dynamics / symbolic dynamics may work
— finite-time analogs of homoclinic and heteroclinic tangles

Probabilistic, geometric, and topological methods
— invariant sets, almost-invariant sets, almost-cyclic sets, coherent
sets, stable and unstable manifolds, Thurston-Nielsen classification,

FTLE, LCS

Many links between these notions — e.g., LCS locate analogs of
stable and unstable manifolds

— boundaries between coherent sets are naturally LCS

— periodic points = almost-cyclic sets

— their ‘stable/unstable invariant manifolds’ = 777



The End

For papers, movies, etc., visit:
www.shaneross.com

Main Papers:

Stremler, Ross, Grover, Kumar [2011] Topological chaos and periodic braiding of
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Preprint.

Lekien & Ross [2010] The computation of finite-time Lyapunov exponents on unstruc-
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