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Abstract— Vehicles in time-varying, non-uniform currents,
such as autonomous vehicles in underwater and atmospheric
settings, present a difficult optimization problem in charting
time-optimal paths from a given source to a given destination.
The problem is especially challenging in the case of weakly
propelled vehicles, where the current is stronger than the
propulsion and the system is not fully controllable. Recent
progress has been made on the general optimal control prob-
lem by using front propagation to track the boundary of a
reachable set. This work presents a significant advancement
on that technique by using alpha shapes to dynamically mesh
the reachable set boundary in three dimensional space. This
process permits the solution, for the first time, of globally
time-optimal trajectories in three dimensional spatiotemporally
varying flows. The method is presented and demonstrated on
an example chaotic flow.

I. INTRODUCTION

Applications in aerial and underwater navigation reduce
to the problem of finding an optimal path through a known
geophysical fluid environment. Here we consider only time-
optimal navigation, where the vehicle has some constant
speed and is controlled by its heading. Note that this for-
mulation is equivalent to a vehicle with controlled, bounded
speed, because in all optimal trajectories the vehicle’s speed
is necessarily maximal. Additional complexity is introduced
when the vehicle is slower than the surrounding current and
the system is not completely controllable, a key focus of
recent efforts.

The problem was first stated as Zermelo’s Navigation
Problem, concerning the solution of minimum-time paths to
cross a river with known analytical flow [1]. This problem
has closed form solutions for many flows, and is often useful
as a test case for more advanced techniques. However, mod-
ern efforts have focused on general computational methods
for arbitrarily specified flows.

The simplest class of methods are grid-based state space
searches, which resemble Dijksta’s shortest path algorithm
[2]. These are methods are highly effective for time-invariant
flows, and can be extended to time-varying flows [3]. Ad-
ditionally, they can be utilized as heuristics to give practi-
cally useful solutions to many variants of the problem [4].
Methods in artificial intelligence have been applied to these
techniques, yielding significant efficiency improvements in
both optimal and approximate methods [5], [6].

Additionally, some authors have investigated numerical

methods such as shooting methods and piecewise optimiza-
tions [7]. These are often practical for simple flows and
finding approximate solutions, but may become unstable and
impractical for optimal solutions in complex, time-varying
flows [8]. Iterative methods are used to relax an initial
path to a locally optimal solution [9]. This method can be
effective on simple flows, even in the time-varying case,
and furthermore it permits a wide variety of cost metrics
in time, energy, and space. However, solution spaces for
complex flows contain many local minima, which prevent
relaxation methods from finding even approximately optimal
solutions. Additionally, finding an initial feasible solution is
nontrivial in the case of a vehicle which is slow relative to
the surrounding flow [10], [11], [12].

Additionally, recent work has addressed the issue of
control schemes for realistic physical vehicles such as un-
derwater gliders [13]. These efforts model realistic vehicle
dynamics to find feedback control laws for basic motion.
These local methods are necessary to actually traverse the
global paths considered here.

Recent efforts for the global problem have utilized set-
based methods with great success [14], [15]. These develop
the solution by considering a reachable front in space which
bounds the reachable set, the region that can be reached for
a given cost (or less). An expansion rule is then used to
optimally deform and expand the reachable set. Once the
reachable set expands to include a desired target destination,
the optimal path to the target can be reconstructed. The front
method can be interpreted by analogy to computational front
propagation techniques; the boundary of the set is treated
as an expanding front [16]. Set-based methods have the
additional strength that they find globally optimal solutions
to the fully general form of the problem, with incompletely
controllable vehicles in time-varying flows. However, previ-
ous work [14], [15], [16] has only considered time-varying
flow fields on a two dimensional domain, due mainly to the
complexity of representing sets in three dimensional space.

In this work, we develop a computational method using
α-shapes to expand reachable sets in 3D space. Using this
method, we derive optimality constraints from Pontryagin’s
Minimum Principle and demonstrate the solution of 3D,
time-optimal trajectories in the general case of the problem.
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Fig. 1: Schematic of S(J), the set reachable with cost less than or equal to J starting from state p0. We propagate the boundary ∂S(J) outward (towards
larger cost) until the boundary reaches the target state pf at a cost Jf . From the point on ∂S(Jf ) which intersects pf , we obtain the control profile which
affects the optimal trajectory from p0 to pf .

All computational methods are available online1 under
an MIT license. Implementations are coded in Python with
SciPy and CGAL for computational geometry [17], [18].

II. SET-BASED CONTROL

The core concept in set-based control is the development
of a reachable set S(J), the set of states reachable with
some cost J . Suppose we want an optimal trajectory from
an initial state p0 to a target state pf . Calculating an optimal
trajectory with a set-based strategy begins by considering an
initial reachable set S(0) = {p0}. This set is continually
expanded to give all points reachable with J > 0. We
then find Jf = min{J : pf ∈ S(J)}, which necessarily
corresponds to the optimal trajectory. Finally, we reconstitute
the optimal trajectory by following pf backwards through the
surface of each reachable set with J < Jf .

To apply this method to a particular system, we must
determine (i) a rule by which to expand S(J) such that it
always contains all reachable states, and (ii) a computational
representation of S(J) in the state space of the system. In
practice, we represent S(J) by its boundary surface ∂S(J),
as in Fig. 1.

In current control problems, we derive a rule for expanding
S(J) from Pontryagin’s Minimum Principle. Intuitively, this
stems from considering the continuous distribution of states
along the boundary of the reachable set ∂S(J). If each of
these states is controlled optimally according to Pontragin’s

1https://github.com/nsharp3/OptimalAlphaShapes

Minimum conditions for the system, they will necessarily
yield ∂S(J + ∆J).

As previous work has shown, this set-based control yields
a powerful technique for the solution of time-optimal tra-
jectory problems [15]. However, it has not been extended
to higher dimensions due to the challenges associated with
representing and manipulating the ∂S surface in 3D. In 2D,
∂S can be represented as a continuous closed curve or set of
curves, but in 3D ∂S is a surface and must be represented as a
mesh. Furthermore, this mesh must support three operations:

– We must be able to generate ∂S(J + ∆J) from ∂S(J)
to iteratively expand the reachable set.

– The discrete set of points which represents ∂S must be
interpolated during the expansion to maintain sufficient
resolution (i.e., adaptive meshing).

– The set will become self-intersecting as the computation
progresses [19]. We must then trim the surface ∂S(J)
during the computation to remove interior sections.
While not strictly necessary for correctness, our findings
agree with previous authors that this step is crucial in
reducing the computational cost scaling [15].

The first operation is relatively straightforward, and the
second operation is nontrivial but not uncommon, but im-
plementing these in addition to the third operation is on
the forefront of surface meshing research. Furthermore, the
topological management of sets in 3D, such as when one
connected S becomes two disconnected sets, provides further
complications.

Recent work has made significant progress in designing
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exact meshing schemes which provide all of these operations
[20]. Indeed, such a scheme would be entirely superior to the
method presented here. However, these methods are not yet
well-enough understood for use in applications such as this.
In the meantime, we provide an alternate approach which
allows theoretical developments and practical applications
to move forward. We also note that because the meshing
procedure is orthogonal to the rest of the optimal trajectory
algorithm, these exact meshing schemes could replace the
α-shape scheme used here once they are sufficiently mature.

III. α-SHAPES

Consider the problem of generating the connectivity of a
surface mesh corresponding to an unconnected point cloud. If
the desired shape is convex, then this is the well-understood
convex hull problem. However, the mapping of point clouds
to non-convex shapes is not well-defined.

The method of α-shapes rigorously define possibly-
concave shapes by using an α parameter which effectively
defines the radius of a minimum acceptable cavity [21]. The
shapes are calculated by finding a Delaunay triangulation and
then removing edges to create concavities, which runs in at
worst-case O(n2) time, where n is the number of points. An
example is shown in Fig. 2.

(a) An unconnected point cloud (b) The corresponding α-shape

Fig. 2: α-shapes define a connected mesh over an unconnected point cloud
of n points, sidestepping the need for advanced meshing.

This definition permits the manipulation of a dynamic
3D mesh without an advanced meshing scheme by treating
the surface as an unconnected point cloud between each
iteration, and re-running the α-shape algorithm to generate
connectivity for interpolation at the end of each iteration.
Points which are not on the surface of the shape must be
internal, and can be discarded to affect a trimming operation.
The threshold for interpolation along the surface can be
related to α, to ensure that the algorithm does not create
false exclusions along the surface.

There is some error associated with this process. If two
sections of S are within a distance 2α of each other, they will
be joined as a single segment. We note that this is an error
in a numerical sense, rather than a logical approximation. As
α→ 0, this error disappears.

IV. TIME-OPTIMAL CONTROL IN A 3D FLOW

Equipped with this 3D meshing procedure, we can directly
extend the method given by Rhoads et al. [15] to provide
the first method for globally time-optimal control in three
dimensions.

The system is defined by a state x = (x, y, z) ∈ R3

(thus p0 and pf correspond to two points in R3) and
heading control state ζ ∈ S2 viewed as a unit vector in R3

parametrized by spherical coordinates, i.e., ζ = (θ, φ) where
θ is in the xy-plane relative to the x axis, and φ is relative
to the z axis (see Fig. 1 where we see that ζ is the local
surface normal to ∂S(J)). The state x evolves according to

dx

dt
=

ux(x, t) + s cos θ sinφ
uy(x, t) + s sin θ sinφ
uz(x, t) + s cosφ

 , (1)

where ux, uy , and uz are the spatial components of a spa-
tiotemporally varying flow field u(x, t). Trajectories which
take the least time will necessarily have s = smax ∀ t. (It can
be shown by induction that s < smax is never time-optimal.)

We can apply Pontryagin’s minimum principle to establish
necessary conditions for an optimal trajectory [15]. The full
procedure is given in Appendix A, but the result is the
control heading equations given in (9). Together with (1), we
have a five-dimensional set of differential equations for the
boundary ∂S which can be propagated with initial conditions
given by an infinitesimal sphere surrounding the starting state
p0.

These relations provide a necessary differential constraint
for the optimal solution, but the initial control ζ0 = (θ0, φ0)
is unknown. The set-based α-shape procedure is then used to
resolve optimal trajectories. This points to an alternative con-
ceptualization of the control scheme as a shooting method—
the surface of the reachable set is merely an effective way
to search the space of possible ζ0.

Results

To demonstrate the performance of this method, we com-
pute time-optimal trajectories through the Arnold-Beltrami-
Childress (ABC) flow. This flow, which mimics unsteady
vortical behavior in currents, is given by:

u(x, t) =

−v sin(ax+ tω) cos(by + tω) sin(cz + tω)
−v cos(ax+ tω) sin(by + tω) sin(cz + tω)
v cos(ax+ tω) sin(by + tω) cos(cz + tω)


(2)

Results for a representative time-optimal trajectory for ve-
hicle much slower than the current are given in Fig. 3. A
movie visualizing the search procedure and solution for this
problem is available in the web repository.2

V. DISCUSSION AND FUTURE WORK

The solution of optimal trajectories in known flow fields
has important applications in industry and research, but
presents a challenging optimal control problem. Recently,

2https://github.com/nsharp3/OptimalAlphaShapes/
blob/master/ABC_Flow_Movie.mp4
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Fig. 3: The solution of a time-optimal trajectory problem in the ABC flow. Flow parameters are v = 2, a = b = c = 2, and ω = 3. The initial state
is p0 = (0, 0, 0) and the target state is pf = (−1.25, 0.8, 1.25), indicated by the ‘?’. The vehicle has speed smax = 0.5, smaller than that of the
surrounding current. A solution is found with Jf = tf = 2.2. At the final iteration, S(Jf ) is represented by 36256 triangular surface facets defined on
18546 points. Implemented in un-optimized, single-threaded Python code, this computation requires approximately 5 minutes on a 2.4 GHz Intel i7 CPU.
(a) The reachable set at t = 1.5. (b) The reachable set at t = 2.2, when the solution is found. (c) The optimal path in space. Plot is scaled for clarity. (d)
The optimal controls θ∗(t) and φ∗(t). Small irregularities along the path correspond to interpolation events on ∂S(J). A corresponding movie is available
on the web at https://github.com/nsharp3/OptimalAlphaShapes/blob/master/ABC_Flow_Movie.mp4

set-based methods have provided robust routines for the case
of time-varying, non-uniform two-dimensional flow fields in
which the flow velocity may be larger than the vehicle’s.

In this work, we develop a computational method using α-
shapes which permits the extension of set-based methods to
three dimensions. With this, we directly solve the problem
of computing time-optimal trajectories in spatiotemporally
varying three-dimensional flows. To our knowledge, this
work represents the first general method for finding globally

optimal solutions to this problem in three dimensions.

Future Work

As with all numerical methods, every detail in the imple-
mentation of this α-shape method has potentially significant
implications for numerical stability and convergence. The
choices of α, the interpolation strategy, and the step size
must be further investigated for these effects. Furthermore,
α-shapes can be weighted, with different α values used at
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different points. This technique could potentially be used
to adapt mesh density for regions of high curvature. Addi-
tionally, the inherent connection between the optimal control
vector and the surface normal vector could be incorporated
to avoid compounding numerical error while propagating
differential equations.

The general statement of the controlled vehicle problem
assumes that the current is fully known at all times. This
assumption may not be realistic in practice, and it would be
valuable to develop methods which compute trajectories in
partially unknown flows. These methods could incorporate
statistical models for the flow to compute trajectories with
minimum expected time. Additionally, the current method
could also extended to account for obstructions in space.

The front propagation techniques we use here for optimal
control could also be applied to the dynamics of reaction
fronts in three-dimensional time-varying, non-uniform fluid
flows, extending previous work in 2D (see, e.g., [16], [19],
[22]). Under the assumptions of (i) the sharp front limit, that
is, the reaction proceeds rapidly compared to diffusion, and
(ii) negligible feedback from the chemical reaction to the
fluid flow, the advection-reaction-diffusion dynamics can be
recast as a 5D set of ordinary differential equations, identical
to our eqs. (1) and (9), for a front element in a fluid flow
u with position and orientation given by (x, y, z, θ, φ). We
intend to apply this method to chaotic 3D flow fields found
numerically [23] and experimentally [24].

There is no inherent limitation in our method to propagate
surfaces in three spatial dimensions; we could have space
and time. Extending to space-time allows one to use front
propagation methods for optimality criteria other than just
time-optimality. In future work, we intend to use this method
to find trajectories which are optimal under a mixed cost
involving both time and control effort. Ideally, we will seek
to implement the method in real time for control of robotic
vehicles in an experimental fluid flow (e.g., [25]).

Additionally, the general technique of using α-shapes
for optimal trajectory control problems could potentially
be applied to control in other dynamical systems. In fact,
α-shapes are well-defined for any dimension, opening the
possibility that they could be used to resolve trajectories in
many previously intractable systems.

Set-based and set-oriented control holds great promise
for the solution of optimal trajectories in a wide range of
dynamical systems, given proper computational techniques
(cf. [26], [27], [28], [29], [30]).
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APPENDIX A: 3D TIME OPTIMAL DERIVATION

Here, we derive necessary constraints on the 3D time-
optimal control problem using Pontryagin’s minimum prin-
ciple. Recall that the state is x, with control ζ, and the state

evolves according to (1). The cost of a trajectory P is given
by arrival time, corresponding to time-optimality.

J(P) =

∫ tf

0

dt = tf . (3)

To derive optimality constraints, we first admit unknown
co-states λ(t) = (λ1(t), λ2(t), λ3(t)) and then construct the
Hamiltonian for the system,

H(λ,x, ζ, t) = λ · dx
dt

+ 1 (4)

The Hamiltonian must be minimized along the controls
H(x∗, ζ∗,λ∗, t) ≤ H(x∗, ζ,λ∗, t) ∀ t ∈ [0, tf ]. The
heading controls θ and φ are unbounded, so the minimization
implies,

∂H

∂θ
= 0 = −sλ1 sin θ sinφ+ sλ2 cos θ sinφ

∂H

∂φ
= 0 = sλ1 cos θ cosφ+ sλ2 sin θ cosφ− sλ3 sinφ.

(5)

Additionally, because the final time is unrestricted, we know,

H(x∗, ζ∗,λ∗, t) = 0 (6)

Eqs. (5) and (6) restrict the costates to functions of the
spherical coordinate form,

λ1 = r cos θ sinφ

λ2 = r sin θ sinφ

λ3 = r cosφ

(7)

where r(t) is a new unknown function representing the extra
degree of freedom in solutions to (5). Eq. (6) is necessary
because it implies that the co-states are not all zero, which
makes (7) a unique representation of each solution.

Now, we consider the final necessary constraint from
Pontryagin’s minimum principle

∂H

∂xi
= −dλi

dt
(8)

Solving this system for co-states with the form of (7) yields
the differential constraints on the optimal trajectory given as,

dθ∗

dt
= −∂ux

∂y
cos2 θ +

(
∂ux
∂x
− ∂uy

∂y

)
cos θ sin θ

+
∂uy
∂x

sin2 θ + cotφ

(
−∂uz
∂y

cos θ +
∂uz
∂x

sin θ

)
dφ∗

dt
= −

[
∂uz
∂x

cos θ +
∂uz
∂y

sin θ

]
cos2 φ+

[
∂ux
∂z

cos θ

+
∂uy
∂z

sin θ

]
sin2 φ− 1

2

[
− ∂uz

∂z
+
∂ux
∂x

cos2 θ

+

(
∂ux
∂y

+
∂uy
∂x

)
cos θ sin θ +

∂uy
∂y

sin2 θ

]
sin(2φ)

(9)
Because the result for r(t) is completely decoupled from the
other two, it can be disregarded. The relations for θ∗ and φ∗

are degenerate about φ = 0 and φ = π, so for computational
implementation we project them on to Cartesian coordinates.
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