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Abstract. Orbits near libration points in the Earth-Sun system provide opportunities for
investigations concerning submillimeter astronomy and terrestrial envimnments. Dynamics of these
orbits can be approximated by periodic orbits in the planar circular restricted three-body problem.
Invariant manifold theory is applied. Stable, unstable and center manifolds for libration points are
approximated. Center manifold approximations are then used as the first step in a differential
correction process to generate families of two-dimensional, periodic orbits near the collinear
libration points L; and L,. No stable orbits have been found. The invariant manifolds at L, and L,
indicate homoclinic orbits may exist.

Introduction

The second Earth-Sun libration point, L, (see Fig. 1), is a quasi-stable equilibrium point in the
gravitational potential 1.5 million km outside the Earth’s orbit along the Earth-Sun line. It is an
ideal location for an infrared astronomical mission because it provides a cold, stable environment
and excellent viewing geometry. At any given time, more than half of the celestial sphere would
be available for observation. The Far Infrared Explorer (FIRE) mission, under the direction of
Professor Andrew Lange of Caltech, the principal investigator, is considering using this location
to map the cosmic microwave background as a follow-on to the Cosmic Background Explorer
(COBE) mission.

In theory, a point mass located at L, could remain there indefinitely. But due to
perturbations and the dynamical instability of L,, such a point mass will remain at L, for only a
short time and will inevitably depart. However, there are period and quasi-periodic orbits in the
neighborhood of L, known as Lissajous orbits. The International Sun-Earth Explorer (Farquhar
et al., 1977) was the first mission to use such an orbit, in the vicinity of the Sun-Earth interior
libration point, L;.

This study deals with the analytical and numerical development of a local approximation
for two-dimensional, periodic orbits near the collinear libration points in the planar circular
restricted three body problem. Dynamics of these orbits can be approximated numerically with
the application of invariant manifold theory. Stable, unstable, and center manifolds for libration
points were approximated. Center manifold approximations were then used as the first step in a
differential correction process to generate families of two-dimensional, periodic orbits near the
collinear libration points L; and L,. No stable orbits have been found, due to the confinement of
the approximations to the ecliptic plane.

The focus of current work is the development of numerical methods useful for
determining trajectories to and from libration points and their associated periodic orbits. This
can be accomplished through a strategy involving the stable and unstable invariant manifolds of
points on halo orbits (Barden, 1994).



Equations of Motion
At present, the general problem of three bodies has no known analytic solution. The associated
dynamical system has a phase space of 18 dimensions requiring 18 constants of integration to
solve the differential equations. Only ten constants are known, thus a complete analytic solution
is not possible. Therefore, assumptions are incorporated that simplify the general problem. The
particular assumptions used lead to a model known as the planar circular restricted three-body
problem (PCR3PB).

The PCR3PB involves two finite masses, m; and m;, assumed to be point masses, moving
respectively in circular motion around their common mass center, each under the gravitational
influence of the other. - A rotating coordinate system, with the origin at the common mass center
is chosen (Fig. 2). The mass parameter [ is defined as the mass ratio m, to the sum (m; + my).

The third body, m;, is assumed to have infinitesimal mass relative to m; and m,. The
motion of mj is restricted to the x-y plane, defined by the circular motion of m; and m,. For
convenience, nondimensional units were chosen such that the following quantities are equal to
unity: the distance between m; and m;, the angular velocity of the rotating frame, and the sum of
the two primary masses, m; + m.

In this system, there are five well known equilibrium solutions, or libration points, where
gravitational and centrifugal forces acting on m; are balanced. With m; > m,, the libration points
are defined as shown in Fig. 2. In the nondimenisional rotating coordinate system, the equilateral
points, L, and Ls, are located respectively at ( .5 - 1, .5V3 ). The exact position of the collinear
points depends on [, but convention defines L to be on the far side of m,, L, to be between m;,
and m;, and L, to be on the far side of m.,.

The equations of motion for the system, as derived in Szebehely (1967), are:
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where the pseudo-potential, U, takes the form
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This system does admit a constant of integration ( C ) identified by the Jacobi which takes the
form

C =2U - (#* +y?). )
The Jacobi constant is extremely valuable as a means to check the accuracy of numerical
integration.

Application of Invariant Manifold Theory
The first procedure in the numerical construction of collinear libration point orbits is to develop
an approximate ‘first guess’ trajectory which can then be refined through a process of differential
correction. Techniques previously used to approximate periodic orbits about the collinear points



have involved analytical development (Richardson, 1979). Invariant manifold theory provides an
exceptionally elegant method to numerically approximate such orbits. The discussion that
follows presents invariant manifold theory in the context of the PCR3BP.

The equations of motion (1), can be written as a nonlinear vector system defined on R*

x=f(x). 3)
Let x be a fixed point of the nonlinear system (i.e. libration point), such that

x = f (%) (4)
By the discussion in Wiggins (1990), it is reasonable to consider the associated linear system

y=Ay. ®)

where A = Df (X) is a constant 4 x 4 matrix. Now R*can be represented as the direct sum of
three embedded subspaces (manifolds) denoted E¥, E“, and E°, which are defined as follows:
(stable) E® =span {el e, },
(unstable) E* = span {ex+1 - }, stu+c=4, (6)

(center) E° =span {es us1>" 2 Espure b

? ¥ s+utc

where {e1 ,---,es}are the eigenvectors of A corresponding to the eigenvalues having negative
real part, {ex 1€ +u}are the eigenvectors of A corresponding to the eigenvalues having
positive real part, and {em ITPEEEI: 2 +C}are the eigenvectors of A corresponding to the

eigenvalues having zero real part. Solutions starting in E° approach X as ¢ — +oo and solutions
starting in E“approach X as ¢ — —eo. Solutions starting in Etend neither toward nor away
from X as t — oo,

Any libration point can be taken forX . Thus, from Egs. (5) and (6), we have a linear
approximation for the invariant manifolds within a sufficiently small neighborhood of a libration
point. One can expand the local approximation to the entire phase space surrounding a libration
point by globalizing the manifolds.

Near the libration point X , any of the manifolds E*, E*, or E¢, can be approximated by
their respective eigenvectors. Thus, the set of eigenvectors,e,, associated with a particular

manifold can be used to obtain an approximation for an inital state vector, X, , which can serve as
an initial condition to globalize the manifold. Globalization can be performed by numerically
integrating the equations of motion ( Egs. (1) ) forward (and backward) in time from the starting

point, X,. To determine X,, the coordinates for the position are displaced from the libration
point L, in the direction ofby some scalary . The coordinates for the velocity are also in the
direction of e, multiplied by'y . The initial state vector is thus defined as

Xy =L, +7e,, 7
The magnitude ofy should be small enough to avoid violating the legitimacy of the linear

approximation, but not so small that errors associated with numerical integration can arise.

For the collinear points, the calculation of the stable and unstable manifolds is straight
forward; there is one eigenvector associated with the stable manifold and one with the unstable
manifold. Due to the nature of center manifolds however, there are two associated complex
eigenvectors. Thus, to approximate the center manifold, we need some new definitions.

The eigenspace of the center manifold, E°, is defined as
E° =span {ecl €, } (8)



. To obtain a real value, we use the projection of this eigenspace on the unit circle, defined as
follows

EA* — ecl +ec2 Ev — i(ecl —-ecZ)

cl c2

e(:] + ec2l ecl - ecZ

€
E =aE,+bE, , a®+b*=1.
The values of a and b can be varied if necessary. We can now define an initial state vector,
X5 =L, +YE, ' (10)
from which the center manifold of a libration point can be globalized. The vector X; can be used
as an initial guess to generate families of two-dimensional, periodic orbits.

Differential Correction Process
Differential correction procedures play an important role in identifying particular initial
conditions which result in motion producing orbits. This requires the state transition matrix,
which reflects the sensitivity of the state at time # to small perturbations in the initial state at time
t,. Equations (1) can be rewritten as four first order differential equations, from which a state
column vector can be defined as X =[x y x ¥]*. Given some known solution, x(t),to
equations (1), the differential equation for the state transition matrix @(z,%,),the matrix of

partial derivatives d X(¢)/d X(¢,) associated with these equations of motion, is

D(1,1,) = A()D(1,1,), (11)
where A(?)is a 4 x 4, (generally) time varying matrix which is divided into four 2 x 2
submatrices
0 I,
where O represents the zero matrix and /, is the 2 x 2 identity matrix. The matrix {2 can be
written
0 01
- L 0 } ’ =
andU ,, has the form
2
U, _—_|: Vs ny:l, where U, = Y ) (14)
u, U, dadb

The initial condition ®(#,,#,)is equal to the 4 x 4 identity matrix. This gives 16 first order
scalar differential equations representing the elements of the state transition matrix. Combined
with the four first order scalar equations of motion, the problem thus presents a set of 20
differential equations requiring simultaneous numerical integration.

The algorithm below closely follows that of Howell (1984) and Breakwell and Brown
(1979) and adapts it to the PCR3BP. Note that the system of equations (1) are invariant under
the transformationy — —yandt — —¢. For simplification, let an initial vector be a center

manifold approximation of the form

X =x,=[x, 0 0,1 (15)
which is perpendicular to the x axis. Since the periodic solution about a collinear point will be
symmetric with respect to the x axis, if another perpendicular crossing can be found, such that



x =[x 00y], - (16)
then the orbit will be periodic with period T = 21, .
The transition matrix ®(z,,0) at the end of a half-cycle of a nearly periodic orbit can be

used to adjust the initial conditions so as to obtain periodicity. Using a numerical integration
procedure, the equations are integrated until y changes sign. The accuracy of the integration is

increased and the integration proceeds again. This process is repeated, until lyl <107, and the

time at this point is defined to be#, . The orbit is considered periodic if %] <107 at#, . If this is
not the case, x can be reduced by correcting the initial velocity y, and integrating again.

Assume |x] is too large. The desired correction to our initial conditions is 8, . Since x,is
held fixed, the correction can be calculated from
ox, = @, 8y, + ¥,0¢, (17)
where
0=238y, =D,y + 5, (18)
and where @ is a typical element of ®(z,,0). Hence

-1
) 1 . )
oy, = ((1334 _‘}.}—(1)24%] &%, , (19)
1

and 8y, produces a X that cancels out any previous,. This provides an iterative calculation
of y, . Using this methodology, the convergence to a periodic orbit occurs within three to four

iterations.
Integration of the second half of the orbit can be performed to obtain the transition
matrix at the end of a full cycle of the periodic orbit,
P(T,0) = ®(21,,0). (20)
It’s eigenvalues determine the first order stability of the orbit; two of the eigenvalues are always
1 and the other two are a self-reciprocal set (A , 1/ A ) which follows from the invariance of (1)

under y — —yand? — —f. The periodic orbit is thus unstable unless A has a modulus of 1.

Numerical Results
A few hundred orbits were calculated to produce the results that follow. This relatively large
number was necessary since the initial guess for an orbit around a particular collinear point was
obtained from the center manifold approximation for the point. The study thus started with an
orbit very close to the point and began each successive orbit further from the point, along the x

axis. The study was performed for the Earth-Sun case (L = 3.03591x 107%).
The eigenvalues(A ,1/A ) of @®(T,0) have been computed, along with the periodic

orbits themselves, following the process described above. The xy projections of the orbits are
shown in Fig. 3. Stability is conveniently decided by the values of stability index
v=31[A +I/M)] 2D

The orbit is stable if [v[<1.

Conclusions
As of this writing, no data are available in a presentable form. Further computer time is
required to verify solutions and confirm some suspicions concerning the nature of those
solutions. Results will be available by early November, 1995.
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