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RESONANCE WIDTHS, CHAOTIC ZONES, AND TRANSPORT IN
CISLUNAR SPACE

Anjali Rawat*, Bhanu Kumar†, Aaron J. Rosengren‡, and Shane D. Ross§

Lunar mean-motion resonances (MMRs) significantly shape cislunar dynamics be-
yond GEO forming stable-unstable pairs, with corresponding intermingled chaotic
and regular regions. The resonance zone is rigorously defined using the separa-
trix of unstable resonant periodic orbits surrounding stable quasi-periodic regions.
Our study leverages the restricted three-body problem to estimate the (stable) res-
onance widths and (unstable) chaotic resonance zones of influence of the 2:1 and
3:1 MMRs across various Jacobi constants, employing a Poincaré map at perigee
and presenting findings in easily interpretable geocentric orbital elements. An
analysis of the semi-major axis versus eccentricity plane reveals broader regions
of resonance influence than those predicted by semi-analytical models based on
the perturbed Kepler problem. A comparison with observed spacecraft in these
regions is made, showing excellent agreement.

I. INTRODUCTION
The dynamics of cislunar space beyond GEO (xGEO) are fundamentally influenced by mean-

motion resonances (MMRs), a factor previously underappreciated due to their negligible effect on
low-Earth orbit satellites. However, for missions like IBEX and TESS, operating within predomi-
nant lunar MMRs, and others like Spektr-R, which seemingly navigates unstable resonance regions,
recognizing the impacts of MMRs is crucial. Determining the stability of a space asset’s xGEO
orbit necessitates a thorough understanding of the dynamical structure of MMRs, particularly the
extent of stable MMRs and the surrounding chaotic regions across various semi-major axis values.

Various semi-analytical methods, such as Gallardo’s algorithm,1 have been used to assess the
domain of influence of predominant MMRs. Yet, these methods often presuppose constant eccen-
tricity over resonant timescales, which does not accurately reflect the highly perturbed Earth-Moon
environment of xGEO. Such approaches, moreover, are fundamentally based on the perturbed-
Hamiltonian formulation, which provides a local, rather than global, picture of specific regions
of phase space. A global geometric dynamical portrait can be furnished by semi-analytical ap-
proaches to the circular, restricted, three-body problem (CR3BP). While some methods integrate
the full CR3BP model, they do not utilize Delaunay variables — which offer analytical benefits
for revealing Hamiltonian structure — in favor of alternative variables for Poincaré maps.2 Con-
sequently, such methods tend to underestimate MMR widths and neglect the presence of unstable
periodic resonant orbits, critical for understanding transit through large connected chaotic zones that
dominate at small values of the Jacobi constant.
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This study computes the semi-major axis stable resonance widths and the larger circumscribing
unstable resonance zones of influence for key lunar MMRs, specifically the 2:1 and 3:1 resonances,
using the planar CR3BP, following known methods.3–7 By applying a Poincaré map at the perigee
of osculating orbits,5, 7 we delineate these regions in terms of the semi-major axis versus the argu-
ment of perigee relative to the Earth-Moon line (the synodic perigee). Our Poincaré maps reveal
resonance regions, notably the prominent 2:1, 3:1, and 4:1 resonance ‘islands’, through which we
can determine the stable width of a resonance, defined as the semi-major axis span of the ‘largest’
(i.e., outermost) stable quasi-periodic torus. Unstable resonant periodic orbits are computed via
symmetry, and their stable and unstable manifolds are visualized on the Poincaré map. Chaotic
(resonance) zones are identified as regions enclosed by the boundaries identified as the union of
segments of stable and unstable manifolds, according to well-established dynamical-systems meth-
ods.8, 9 Resonance widths and the larger enclosing chaotic resonance zones are computed across
a range of Jacobi constants, subsequently correlating the widths with projections of PCR3BP en-
ergy surfaces onto the osculating eccentricity (e) versus semi-major axis (a) plane. The directly
computed PCR3BP-based stable resonance zone widths are compared with semi-analytical predic-
tions.1, 10, 11 Moreover, the orbits of both historic and current xGEO spacecraft, obtained via their
two-line element (TLE) sets, are projected onto the (a, e)-plane to ascertain their positioning within
stable or unstable resonance regions.

This paper is structured into ten sections. Section I introduces the problem’s motivation and re-
views relevant prior research. Section II provides a concise overview of the CR3BP. Section III
details key aspects of Poincaré maps, focusing on stable and unstable periodic orbits, and defining
stable resonance widths and the larger chaotic resonance regions. Section IV explores MMRs in
xGEO, highlighting both stable and unstable periodic orbits. Section V outlines the methodology
for identifying unstable fixed points and their stable and unstable manifolds. Section VI presents
summarized findings from a semi-analytical approach assessing MMR widths. Section VII dis-
cusses the methodology employed to determine resonance widths and chaotic zones, mapping them
onto the (a, e) plane, and compares with semi-analytically computed widths and TLEs of space-
craft. Section VIII explores potential heteroclinic transfers, including transfer timings. Section
IX provides a discussion on the interaction of the L1 Lyapunov orbit manifold tubes with MMR
manifolds. Finally, Section X provides a summary of the paper’s results and future works.

II. PLANAR, CIRCULAR, RESTRICTED, THREE-BODY PROBLEM
The planar CR3BP (PCR3BP for short) is the simplest model for motion in cislunar space whose

dynamics capture the main qualitative features of the true motion. It describes the motion of a
massless spacecraft relative to two primary bodies (e.g., Earth and Moon), viewed in a rotating
frame centered at the center of mass (barycenter) of the two primaries. The PCR3BP assumes
the motion of both primaries move in circular orbits with constant angular velocity about their
barycenter, and all three bodies move in a single plane.

In the equations of motion of the PCR3BP we choose normalized units such that the distance
(am) between the two masses m1 and m2 is 1, their combined mass is 1, and the period of their orbit
relative to the barycentered inertial frame, i.e., the sidereal period Tm, is 2π. The only parameter of
the system dynamics is then the mass ratio µ, defined as m2

m1+m2
. For the Earth-Moon system, we

use µ = 1.2150584270571545 × 10−2. We choose a coordinate frame rotating, as in Figure 1(a),
with the two massive bodies and centered at their barycenter with m1 and m2 lying on the x-axis
at (−µ, 0) and (1− µ, 0), respectively. The PCR3BP second-order differential equations of motion
for the spacecraft in the normalized units is then,
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Figure 1: (a) The planar circular restricted three-body problem (PCR3BP) geometry in the
non-dimensional co-rotating (x, y) frame models the motion of a spacecraft S/C with respect
to the Earth (E) and Moon (M ). (b) The osculating or instantaneous orbital elements for a
spacecraft in a geocentric orbit about the Earth. The argument of perigee with respect to an
inertial frame (ω) and the rotating frame (g) are shown, as is the true anomaly (ν).
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where r1 =
√

(x+ µ)2 + y2 is the distance from the spacecraft to the primary body and r2 =√
(x− 1 + µ)2 + y2 is the distance to the secondary. In general, we refer to a point in the 4-

dimensional phase-space manifold M as X . This point can be written in terms of the rotating
frame Cartesian coordinates given above, X = (x, y, ẋ, ẏ). Alternatively, in the geocentric part of
M, one can use instantaneous (i.e., osculating) geocentric orbital elements, e.g., X = (a, e, ℓ, g),
where a is the semi-major axis, e the eccentricity, ℓ the mean anomaly, and g the perigee angle with
respect to the positive x-axis, as depicted in Figure 1(b).

Jacobi Constant and the Energy Manifold. The Jacobi constant is proportional to the negative
of the Hamiltonian energy of the system and is a constant of motion of the CR3BP equations. In
other words, for an initial condition X ∈ M, this scalar value does not change. The formula we use
for the Jacobi constant is, *

C(x, y, ẋ, ẏ) = x2 + y2 + 2

(
1− µ

r1
+

µ

r2

)
−
(
ẋ2 + ẏ2

)
. (2)

Let MC be the energy manifold or energy surface given by setting the Jacobi integral (2) equal to a
constant, i.e.,

MC = {X ∈ M | C(X) = C = constant}. (3)

The surface MC can be considered as a 3-dimensional manifold embedded in the 4-dimensional
phase space M. For the geocentric portion of MC interior to the Moon’s orbit, dimensionality can
be further reduced by using a 2-dimensional Poincaré surface of section, described in section III.

*We note that this definition differs from some authors, who add a constant value µ(1−µ), so that the Jacobi constant
of the L4, L5 points is precisely 3. We adopt the convention in current use among the cislunar astrodynamics community.
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Tisserand Parameter. An approximation to the Jacobi constant in orbital-element space with
respect to the Moon is the Tisserand parameter (T ≈ C), defined in the PCR3BP as,

T =
1

a
+ 2

√
a(1− e2), (4)

which dynamically limits the range of motion a non-maneuvering spacecraft is capable of, depicted
using the geocentric orbital elements semi-major axis (a) and eccentricity (e).

III. THE POINCARÉ MAP AND KEY DYNAMICAL FEATURES
Surface of Section at Perigee

In our study, we define the Poincaré surface of section at perigee crossings identified when the
geocentric mean anomaly ℓ is zero (same condition as true anomaly ν equals zero). We introduce a
function,

h(ℓ) = cos ℓ+ 1
4 sin ℓ− 1, (5)

which only crosses zero in an increasing direction when ℓ = 0 (perigee), effectively preventing false
detections of perigee during apogee where ℓ = π.* Therefore our Poincaré section, parametrized
by Jacobi constant C, is defined as,

ΣC = {X ∈ MC | h(ℓ) = 0}. (6)

The Poincaré section so constructed can be represented by two variables that can be interpreted in
orbital-element variables: the semi-major axis a and the synodic argument of perigee g, the angle
between perigee and the Moon’s location in the rotating frame, Figure 1. As g is an angular variable,
ΣC has a cylindrical topology, i.e., (a, g) ∈ I × S1 where I ⊂ R, and S1 is the circle.

Poincaré Map on the Poincaré Section
Poincaré maps simplify the study of the PCR3BP by transforming a four-dimensional phase space

into a more manageable two-dimensional analysis, elucidating periodic, quasi-periodic, and chaotic

*If the spacecraft near apoapsis, ℓ = π, comes close to the Moon, then the mean anomaly ℓ can momentarily decrease.
If one uses an events function that, as ℓ increases, crosses zero at perigee and apogee in increasing and decreasing
directions respectively, this momentary decrease in ℓ can trigger a false detection of ℓ = 0 even when in reality the
spacecraft is going through ℓ = π. The above h crosses zero at ℓ = 0 and ℓ ≈ 0.49 rad in increasing/decreasing
directions, respectively; at the latter point the spacecraft is not influenced strongly enough by the Moon for ℓ to start
decreasing, so the issue is avoided.

^

Px0

Figure 2: Poincaré map P on the Poincaré section ΣC in the PCR3BP. The unit vector Σ̂ gives
the sense in which trajectories are crossing ΣC .
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behaviors, and revealing the intricate manifold structures that govern the system’s dynamics. Let ΣC

represent a 2-dimensional surface transverse to the flow along the energy manifold MC , (Figure 2),
and let x0 denote an initial state, not necessarily in ΣC . The Poincaré map P (x0) = s corresponds
to the first crossing of ΣC by the trajectory originating at x0 in a particular direction. In general, we
will consider mappings of ΣC to itself,

P : ΣC → ΣC ,

s 7→ P (s).
(7)

We establish important terminology below.
Definition 1. The “orbit” of a point s ∈ ΣC under P is the set of all the past and future iterates of
the point s under the map P , i.e., the infinite sequence of points, {. . . , P−1(s), s, P 1(s), P 2(s), . . .},
also denoted as O(s). See Figures 2 and 3(a) for examples of points and their iterates under the
map P . Note that the orbit of s is the same as the orbit of P k(s) for all k ∈ Z, and all represent the
same continuous “trajectory” within the energy manifold MC .

Some orbits of P do not contain an infinite number of distinct points, but instead have a finite
number of distinct points. These are periodic orbits of P in the sense that the sequence repeats after
some minimum integer n ≥ 1 number of iterates.
Definition 2. A periodic orbit of P is a finite sequence of points O(pn) = {p1, . . . , pn} such that
pk = P (pk−1) for 2 ≤ k ≤ n and p1 = P (pn). The period-n points O(pn) represent a continuous
periodic trajectory, a closed loop, within the energy manifold MC .

This is a generalization of fixed points, as the state returns to the initial point p1 ∈ Σ after n
iterates of the Poincaré map, i.e., p1 = Pn(p1), where Pn denotes n compositions of P , P ◦ P ◦
· · · ◦P ◦P (n times). For a periodic orbit, we note that each of the points p1, . . . , pn is a fixed point
(a period-1 point) under n iterates of the map, i.e., pk = P̄ (pk), where P̄ = Pn, and thus we may
occasionally refer to each one individually as a fixed point.

If a periodic orbit O(pn) is of saddle-type, each of the points p1, . . . , pn ∈ O(pn) will have
stable (W s(pi)) and unstable (W u(pi)) invariant manifolds, for i = 1, . . . , n, consisting of orbits
of P which tend asymptotically toward and away from O(pn), respectively. It is known that for
two-dimensional maps from 2 degree-of-freedom Hamiltonian systems,12, 13 some periodic orbits
O(pn) are related to a general idea of “resonance”, beyond just the application to orbital dynamics.
If O(pn) is of center-type stability, this is a stable resonant orbit. If O(pn) is of saddle-type stability,
this is an unstable resonant orbit. It should be noted that all members p1, . . . , pn of a periodic orbit
have the same stability type.

Let us focus for now on an unstable resonant orbit. There is a systematic way to obtain a “reso-
nance zone”, or as referred to above, the chaotic resonance zone, corresponding to the resonance,
via the stable and unstable manifolds of O(pn). We first must define a certain type of intersection
between the stable and unstable manifolds of O(pn). As the stable and unstable manifolds, W s(pi)
and W u(pj), are 1-dimensional curves within the 2-dimensional Poincaré section ΣC , they will
generally intersect transversally in points.* An intersection point of the stable and unstable mani-
folds of the saddle-type periodic orbit O(pn) = {p1, . . . , pn} is termed a primary intersection point
(PIP), denoted by q in Figure 3(a), if it meets the following criteria.

Definition 3. Suppose q ∈ W u(pi)
⋂
W s(pj), where pi, pj ∈ O(pn), and let U [pi, q] denote

the segment of W u(pi) with endpoints pi and q and S[pj , q] denote the segment of W s(pj) with
endpoints pj and q. Then q is called a “primary intersection point (PIP)” if U [pi, q] intersects
S[pj , q] only at the point q (and pi if i = j).

*A degenerate case occurs when W s(pi) = Wu(pj), a 1-dimensional intersection, but we will not consider this case.
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Figure 3: (a) The point q is a PIP, q̄ is not a PIP (it is sometimes called a secondary intersection
point). (b) A BIP q defining a local boundary B between two “sides”, regions R1 and R2.

Since PIPs are intersections of stable and unstable invariant manifolds, it follows from the def-
inition of stable/unstable invariant manifolds, that all the past and future iterates of a PIP are also
PIPs. The following lemma is proved in Wiggins 1990.9

Lemma 1. Suppose q ∈ W u(pi)
⋂
W s(pj) is a PIP; then P k(q) is a PIP for all k ∈ Z.

We use PIPs to define boundaries, sometimes called separatrices, and subsequently resonance
regions. Any PIP can be used to denote a local boundary.

Definition 4. Suppose W u(pi) and W s(pj) intersect in the PIP q. Define B ≡ U [pi, q]
⋃
S[pj , q]

as a boundary between two “sides,” region R1 and region R2. The PIP is then called a boundary
intersection point (BIP).

As a matter of convention, for a BIP we pick the PIP with the shortest arc-length of the man-
ifolds, measured from the fixed points to the intersection point, i.e., the shortest arc-length for
U [pi, q]

⋃
S[pj , q]. The BIP and the boundary B it defines allows for the local division of the

Poincaré section ΣC into distinct regions R1 and R2, as illustrated in Figure 3(b).

As there are always two branches each for a stable and unstable manifold, we can identify
both a “top” and “bottom” boundary. We denote the two branches of the unstable manifold of
a period-n point pi by W u

+(pi) and W u
−(pi), and similarly for pj . Referring to Figure 4, we

suppose that W u
+(pi) intersects W s

+(pj) and W s
−(pi) intersects W u

−(pj). Choosing BIPs q+ ∈
W u

+(pi)
⋂

W s
+(pj) and q− ∈ W s

−(pi)
⋂
W u

−(pj), we can identify boundaries B+ and B− that
define a closed region R1, which we refer to as a resonance region.

Within our cylindrical Poincaré section ΣC , we can have multiple resonance regions, as shown in
Figure 5. For our purposes, we will label the “width” of a (chaotic) resonance region as the distance
between the BIPs with the maximum and minimum semi-major axes, the dashed lines in Figure 5.
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Figure 4: Construction of a top and bottom boundary to a resonance region R1.
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Figure 5: Example calculation14 of two neighboring resonance regions corresponding to
neighboring resonant orbits, a period-3 orbit O(p3) = {p1, p2, p3} and a period-1 orbit
O(p̄1) = {p̄1}. The “identify” reminds us that the horizontal axis, the argument of perigee,
is an angle and therefore we are looking at a “cut” and “unfolded” portion of the cylindrical
phase space ΣC .

Resonance regions represent the dynamical “sphere of influence” of a particular resonance. In
the PCR3BP, they contain within them the corresponding stable resonant periodic orbit and the sur-
rounding stable quasi-periodic orbits, the librational resonant tori. Outside of the largest (outermost)
librational torus, there is a “stochastic” or chaotic layer. This is illustrated in Figure 6. The dynam-
ics of motion into and out of the resonance region are determined by lobe dynamics not addressed
here,14 but documented elsewhere.6, 15–18

Intersections between stable and unstable invariant manifolds of different periodic orbits can
occur. For example, suppose O(pn) and O(p̄m) correspond to two different continuous unstable
periodic trajectories in the PCR3BP, as in Figure 5. Unless constrained by other barriers within
ΣC , such as rotational invariant curves (RICs)3, 5, 19–which are quasiperiodic KAM tori which block
transport along semi-major axis in the cylindrical phase space of ΣC — it is possible for there to be
intersections between their stable and unstable manifolds, denoted as heteroclinic points.

Definition 5. A point q ∈ ΣC is called a heteroclinic point if q ∈ W u(pi)
⋂
W s(p̄j). Such a point

corresponds to a continuous heteroclinic trajectory in MC , which is backward asymptotic to O(p)
and forward asymptotic to O(p̄).

One can see several such heteroclinic points in Figure 5, although they are not called out. Hete-
roclinic transfers between unstable resonance orbits will be explored in Section VIII.

IV. RESONANCE IN XGEO
Resonances in celestial mechanics result from gravitational interactions among celestial bodies,

where their orbital periods create specific ratios. For instance, a 2:1 resonance signifies that one
body completes two orbits for every single orbit completed by another, thereby influencing the
stability and evolutionary trajectories of orbits over extended duration; see Figure 7.

Of particular interest for space domain awareness (SDA) within cislunar xGEO space are recur-
rent pathways between Earth and the Moon’s orbit. Resonant orbits, being inherently periodic, have
a rich history in mission-design applications, particularly within the Earth-Moon system.
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Figure 6: Example calculation on a Poincaré section at perigee, ΣC , showing background
points; initial conditions followed over several iterates of the map P . One sees regions of con-
centric closed curves, the quasiperiodic librational tori of various stable islands, grouped into
horizontal bands at nearly constant semi-major axis; these are the stable resonances. Outside
of these closed curves, an almost uniform distribution of scattershot points representing a con-
nected chaotic sea is shown. Within this chaotic sea are unstable resonant periodic orbits, and
their stable and unstable manifolds, which reveal the template of chaotic motion. For instance,
the period-1 point pu1 , shown near the top, is the unstable resonant periodic orbit counterpart
of the stable resonant periodic orbit ps1. The stable resonance width is given by the outermost
closed curve of the stable resonance, while the larger chaotic resonant region width is given
by the semi-major axis width between the upper and lower BIP. Other stable period-n points
corresponding to other resonances are also shown.

A mean-motion resonance denoted as k:km is characterized by the ratio of orbital periods where k
and km denote coprime positive integers representing the number of spacecraft and Moon geocentric
orbits completed with respect to an Earth-centered inertial frame. In this paper, we study interior
resonances, where k > km. Expressed in terms of the inertial-frame period of the spacecraft, T ,
and the sidereal period of the Moon, we have an approximate relationship, T/Tm ≈ km/k. When
observed within the context of the CR3BP, resonant orbits do not adhere strictly to the integer
ratio km/k, thus T/Tm ≈ km/k is approximate. Instead, a spacecraft completes approximately k
revolutions around the Earth in the time it takes the Moon to complete km revolutions. In terms of
the Poincaré map and section pair described above, (P,ΣC), a resonant orbit is a period-m orbit
which takes approximately n sidereal lunar periods. These orbits can be found via differential-
correction procedures that are well-known in the literature.14

Resonant orbits can be categorized as either stable (characterized for interior resonances by a
perigee oriented towards the Moon viewed in the rotating frame) or unstable (for interior resonances,
having an apogee oriented towards the Moon). Unstable resonant orbits can be used in mission
design for transfer scenarios, while stable resonant orbits, as demonstrated by missions such as
IBEX and TESS, ensure sustained operational stability. For example, IBEX transitioned into a stable
3:1 resonant orbit following its launch, contributing to its prolonged mission duration.20 Similarly,
TESS has maintained a stable 2:1 resonant orbit since its inception via a lunar flyby.21
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Stable Resonance

Unstable Resonance

Figure 7: The geometry of mean-motion resonances. (Upper left) Consider a spacecraft in a
2:1 resonance with the Moon. The relative positions of the Moon (gray circle) and the space-
craft (black circle) for the stable resonance when their orbital periods are in a ratio of 2:1.
Along the top, Tm is the period of the Moon’s orbit then the diagrams illustrate the configu-
rations at times, from left to right, t = 0, t = 1

4Tm, t = 1
2Tm, t = 3

4Tm, t = Tm, and on the
left, shown schematically in the rotating frame. Along the bottom, we illustrate an unstable
resonance the same way, and on the right, in the rotating frame. Notice the stable resonance
has a perigee in the direction of the Moon and the unstable resonance has an apogee in the
direction of the Moon.

V. UNSTABLE PERIODIC ORBITS AND MANIFOLDS

In the PCR3BP, to understand the structure of unstable resonant orbit families and the heteroclinic
dynamics induced by them, one needs to compute the corresponding periodic orbits as well as their
stable/unstable manifolds. To compute a family of k:km unstable periodic orbits in the Earth-Moon
PCR3BP, we start with an orbit state from the Earth Kepler problem having semi-major axis a
such that (a/am)3/2 = (km/k) and initial argument of periapse and true anomaly both π (for the
interior MMRs considered in this study). This orbit will be symmetric about the x-axis and will
also be periodic in the rotating Kepler problem (i.e., PCR3BP with µ = 0). Thus, the method of
perpendicular x-axis crossings can be used to numerically continue this Keplerian orbit to the true
value of µ = 1.2150584270571545 × 10−2 for the Earth-Moon system; see, for example, Section
2.6.6.2 of Parker and Anderson22 for details of this method. The same method is then used to
continue the resulting PCR3BP orbit through the rest of its orbit family, using the perpendicular
orbit x-intercept as the continuation parameter.

Once the periodic orbits in a family k:km have been computed, the computation of their sta-
ble/unstable manifolds is carried out. In particular, we compute the intersection of these manifolds
with the previously mentioned perigee Poincaré surface of section. Such sections have been used
by, e.g., Ross and Scheeres5 and Howell et al.23 as well; they have better transversality to the
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PCR3BP flow as compared to other commonly used sections such as y = 0. When using such a
section, however, the periodic orbit intersection points with the section are not fixed points of the
section’s Poincaré map, but become period-k orbits under the map, as discussed in Section III. This
is because such an k:km orbit passes through periapse (apoapse) k times during one period, which
takes approximately km lunar sidereal periods.

The portions of the periodic orbit stable/unstable manifolds lying in the chosen Poincaré sec-
tion will correspond to 1D curves — one curve for each of the period-k points lying in the sec-
tion. To help accurately compute the manifolds, we extended to the period-k iteration orbit case
the second author’s previously developed parameterization method24, 25 for computing Taylor-series
approximations of periodic orbit stable/unstable manifolds; this extension also incorporates many
methods from the second author’s previous work26 on computing manifolds of invariant tori. Al-
though a full description is beyond the scope of this paper, in short, we solve for a function
W : {0, . . . , k − 1} × R → R4 ⊂ MC such that,

ϕτ(i)(W (i, s)) = W (i+ 1 mod k, λs) i ∈ {0, . . . , k − 1}, (8)

where ϕt(X) is the PCR3BP flow map of a point X ∈ M by time t, τ(i) are the times between the
ith and (i+ 1)th periapse passes of the periodic orbit being considered, and λ is the kth root of the
monodromy matrix eigenvalue corresponding to the stable/unstable manifold. Equation (8) can be
solved recursively by expressing W as a set of Taylor series depending on the integer i,

W (i, s) =
∞∑

m=0

Wm(i)sm i ∈ {0, . . . , k − 1}, (9)

where W0(i) = pi+1 are the periapse period-k points of the periodic orbit, and W1(i) are scaled
eigenvectors of the periodic orbit monodromy matrix at each of its periapse passages, with Wm(i)sm

for m ≥ 2 corresponding to higher order terms in the stable/unstable manifold approximation.

The k curves parameterized by W lie near but not on the periapse section of interest. Thus,
to finally compute the manifolds on the section, one simply numerically integrates dense grids of
points from those curves either backwards or forwards to the section. Then, further applications
of the Poincaré map either forwards or backwards in time are used to respectively globalize the
full unstable and stable manifolds. As usual, for each fixed Jacobi constant value C, one can plot
these Poincaré map manifolds of various orbits at that C value using just 2D coordinates on ΣC .
Intersections of the 1D manifold curves, {W u,s

± (pi)}, will provide the geometry (e.g., PIPs, BIPs,
homoclinic points, heteroclinic points) as discussed in Section III.

VI. SEMI-ANALYTICAL APPROACH TO IDENTIFY RESONANCE WIDTHS
Standard tools have been developed in celestial mechanics to calculate the width (strength) and

location of MMRs, under the perturbed Hamiltonian formulation.1, 27, 28 They all invariably employ
an expansion of the Hamiltonian around each resonant location and a canonical transformation
to reduce the Hamiltonian to a system with only one single harmonic (i.e., normal-form reduc-
tion). While the mathematical developments here are straightforward, they can be algebraically
quite complicated, especially for distant xGEO orbits of high eccentricity and inclination.

The Hamiltonian describing the resonant dynamics is,

K(a, σ) = −µe

2a
− nm

km
k

√
µea−R(a, σ), R(a, σ) =

1

2πk

∫ 2πk

0
R(λm, λ(λ, σ)) dλm, (10)

where µe = Gme is the Earth’s gravitational parameter, nm =
√
µe/a3m is the Moon’s mean

motion, λm and λ are the Moon and satellite mean longitudes, respectively, and R is the Moon’s
disturbing function,

10



R = µm

(
1

|rm − r|
− r · rm

r3m

)
. (11)

The resonant disturbing function, R(a, σ), can be written as a series expansion of cosines whose
critical arguments are of the type,

σ = kpλm − kλ+ γ, (12)

where γ is a slowly evolving angle defined by a linear combination of the longitudes of the ascending
nodes Ω and longitudes of perigee ϖ = Ω + ω of the satellite and Moon. Gallardo10, 11 uses a
numerical computation for the averaging in Eq. (10), assuming fixed coplanar orbits for both the
spacecraft and the Moon, and taking for the spacecraft the semi-major axis corresponding to the
nominal position of the resonance, during the period of time in which the integral is calculated.
This is justified in the asteroid case by the otherwise slow evolution timescale of (e, i, ω,Ω), as
compared to the oscillations of a and σ. Another assumption is that the perturber’s orbit is circular.

For the Earth-Moon system, the resonance widths using Gallardo’s algorithm are shown in os-
culating semi-major axis-eccentricity (a, e) space in Figure 8, with their qualitative phase-space
structure generally resembling those in the small-body context.29 Time histories of historic and cur-
rent cataloged xGEO space objects, based on TLE data, are also overlaid. Notably, the computed
widths appear to dramatically underestimate the 3:1 and 2:1 stable resonance zones, where IBEX
and TESS are respectively located (labeled in Figure 12).

Figure 8: The historic and current cataloged xGEO space objects projected onto the semi-
major axis-eccentricity (a, e) plane, superimposed on the atlas of MMRs, where each color
corresponds to the two-line element (TLE) time histories of individual objects (www.space-
track.org, Assessed 10 Mar. 2023). The contours of constant Tisserand parameter, shown in
black, and Gallardo’s analytical approximation of widths of predominant MMRs (gray) are
both computed assuming that the objects’ and Moon’s orbit are coplanar.
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VII. DIRECT IDENTIFICATION OF RESONANCE WIDTHS AND CHAOTIC ZONES

We calculate the Poincaré section ΣC for a range of Jacobi constants which reveals various res-
onances; see the (a, g)-plane in Figure 9, where, recall, g is the argument of perigee in the rotating
frame. The prominent resonances are the 2:1, 3:1 and 4:1 MMRs; the stable resonances are par-
ticularly apparent as “islands” of concentric closed curves surrounding center points that are stable
period-2, period-3, and period-4 orbits, respectively. The closed curves surrounding the stable fixed
points are stable quasi-periodic librational tori (recall Section III). Surrounding these resonance is-
lands are regions of chaos. These regions are not featureless. Instead, the template of the motion
is given by the corresponding unstable MMR periodic orbits, which appear as saddle-type period-k
points on the Poincaré section ΣC . Using the method of Section V, their stable and unstable mani-
folds are computed. The stable and unstable manifolds intersect to form homoclinic and heteroclinic
tangles, which provide the paradigm with which to understand chaos in the CR3BP.4, 30

The region of existence of a particular periodic resonance can be identified by examining the
Poincaré section, which also reveals the strength (width) of the resonance. Resonance widths were
defined in Section III (see Figure 6), and are shown for the 3:1 and 2:1 MMRs on Poincaré maps
computed for C = 3.00, 3.05, 3.10, 3.15 in Figure 9.

The influence of the resonance region extends beyond the outermost stable resonance librational
torus regions to the “separatrix”, the boundary formed by the intersection of stable and unstable
manifolds described in Section III (see Figure 5). Focusing on the MMR bands, we use the methods
of Section III to identify BIPs and designate the boundary of the (chaotic) resonance region. BIPs
defining the chaotic zones are depicted on the same Poincaré maps in Figure 9.

While the resonances are identified and depicted in (a, g) space, we would like to also depict them
in the (a, e) plane, for comparison with the space objects and analytical resonant widths shown
in Figure 8. The Poincaré section points, which are actually 3-dimensional points (a, e, g) for

Figure 9: Poincaré sections ΣC for C = 3.00, 3.05, 3.10, and 3.15, depicting resonance widths
of the stable 2:1 and 3:1 MMRs and BIPs of the corresponding unstable periodic resonance
orbits forming chaotic zones for the 2:1 and 3:1 MMRs.
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Figure 10: Resonance widths and resonance regions for 2:1 and 3:1 resonance for C =
3.00, 3.05, 3.10, 3.15 (going from top curve to bottom) shown in the (a, e) plane. The ‘+’ on
the widths mark the location of the stable periodic orbits (center). The filled circles on the Tis-
serand curves are the location of the BIPs, representing the resonance’s region of influence.

each C, can be projected into the (a, e) plane as in Figure 10, where stable resonance widths and
the BIPs bounding the resonance zones are delineated. As noted in Section II, Tisserand curves
are an approximation to the projection of an energy surface MC onto the (a, e) plane. For each
Jacobi constant C in Figure 10, we also show the Tisserand curve, merely to show the agreement,
particularly for smaller semi-major axes.

The results in Figure 10 illustrate our method, but the number of Jacobi constants is sparse. To
get a fuller picture of the (stable) resonance widths and the (chaotic) resonance regions, Poincaré
sections were computed for Jacobi constant values C ranging from 2.50 to 3.42 in increments of
∆C = 0.02. As shown in Figure 11, the Poincaré section points were projected onto the (a, e)
plane, marking resonance widths and chaotic zones (via BIPs) for the 2:1 and 3:1 resonances. The
widths obtained by using the full CR3BP model are larger than those computed using Gallardo’s
algorithm. The influence of the resonance regions is more spread out. The width, particularly for
the 2:1 resonance, does not taper towards e = 0 as compared to Gallardo’s approximation. The
Gallardo’s width for 2:1 resonance does not mark the center of the stable island, i.e, the 2:1 stable
periodic orbit computed in the CR3BP. Moreover, the shape of the 2:1 resonance does not show
the characteristic shape seen in other resonance width computations based on the CR3BP2, 31 — a
largest width near some eccentricity 0.3 ≤ e ≤ 0.7 tapering to significantly smaller widths as e
approaches 0 and 1. We note that earlier work tended to assume that resonance widths should be
along lines of constant semi-major axis in the (a, e) plane31 which does not consider the ‘tilt’ of the
energy surface (as approximated by Tisserand curves).

The 2:1 and 3:1 resonance regions, as represented by BIPs, nearly touch in the region between
them, indicating possible heteroclinic connections, discussed in Section VIII. Taken together, the
2:1 and 3:1 resonance regions span approximately 0.3 NDU (about 115,000 km) in semi-major
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Figure 11: Resonance widths and chaotic resonance zones for 2:1 and 3:1 resonance for
C = 2.50 to C = 3.42 with increments of ∆C = 0.02, overlapped on Gallardo’s widths

axis, which encompasses numerous higher-order resonances, suggesting the potential for multiple
free transfers between different order resonances.

As done previously in Figure 8, time histories of historic and current cataloged xGEO space
objects are overlaid in Figure 12. The CR3BP resonance widths effectively encompass several

Figure 12: TLEs of xGEO space objects (from Figure 8) superimposed on Gallardo’s widths
and the CR3BP widths. The CR3BP resonance widths correctly capture the spread of space
assets in the 2:1 and 3:1 stable resonance zones, namely IBEX, TESS and Spektr-R.
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spacecraft, such as IBEX, TESS, and Spektr-R. In contrast, the narrow semi-analytical, resonance-
zone approximation inadequately represents the spacecrafts’ locations. Notably, the PCR3BP can
accurately discern the dynamics of even non-coplanar spacecraft like IBEX, underscoring its util-
ity in providing fundamental insights into spacecraft dynamics in cislunar space. Utilizing these
resonance widths facilitates the determination of whether a spacecraft is within a stable or chaotic
orbital regime, thereby aiding in mission analysis and prediction of its future orbital evolution.

For instance, IBEX’s nominal orbit exhibited chaotic behavior due to lunar perturbations, prompt-
ing a transition to a stable resonant orbit with the Moon.20 A comprehensive understanding of
chaotic dynamics in such environments would have been valuable during the mission’s early design
phases. This understanding has partly informed the orbital design of missions like TESS.21 Al-
though significant challenges remain in comprehending lunar secular and mean-motion resonances,
progress in discerning the influence of specific resonances, such as the 2:1 and 3:1 MMRs, through
the PCR3BP, contributes to advancing our understanding of these lunar resonances.

VIII. HETEROCLINIC CONNECTION BETWEEN RESONANCES
The Poincaré maps (Figure 13) reveal intermingling of the stable and unstable manifolds of 2:1

and 3:1 unstable resonant orbits while the 4:1 resonance is disconnected from the two, due to a RIC
(barrier) that prevents chaotic transport3, 5, 19 even at lower Jacobi constants (higher energies).

To study heteroclinic connections between 2:1 and 3:1 resonances, intersections are identified
between the unstable manifold of the 3:1 unstable periodic orbit and the stable manifold of the 2:1
unstable periodic orbit. Similarly, intersections are found between the unstable manifold of the 2:1
unstable periodic orbit and the stable manifolds of the 3:1 unstable periodic orbit. This suggests

Figure 13: Top panel: C = 3.10, no connection observed between 3:1 and 4:1 resonances.
Numerical evidence suggests the 4:1 resonance region is blocked from connections to the main
connected chaotic component of ΣC (which includes the 3:1 and 2:1 resonance regions) via
a barrier, a rotationally invariant circle (RIC).19 Bottom panel: C = 2.85 marks one of the
highest-energy, most eccentric unstable prograde orbits in the 4:1 family. Blocked by RICs,
its manifolds still show no signs of any heteroclinic jumps to other resonances.
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the existence of direct transfer trajectories between the two resonance orbits, enabling a change in
semi-major axis value without fuel expenditure.

Heteroclinic transfers are computed for various Jacobi constants. The selection of the intersection
point of stable and unstable manifolds determines the type of transfer trajectory. Our study examines
two types of transfer trajectories: type 1 (short-duration) and type 2 (long-duration). For transfer
type 1, the intersection point selected is marked as 9 (Figure 14), which determines a direct, shortest-
duration transfer between the two resonances. This intersection point ceases to exist for C ≥ 3.09,

Figure 14: Two types of heteroclinic transfer trajectories between 3:1 and 2:1 resonances.
Type 1 (short duration) for C = 3.00 (left) and type 2 (long duration) for C = 3.15 (right).
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due to lower energy, resulting in reduced chaos, and consequently, the interaction of stable and
unstable manifolds leading to direct transfer ceases to exist. The intersection point selected for
transfer type 2 is marked as 10 (Figure 14), representing a longer-duration transfer that transitions
from the 3:1 to the 2:1 unstable periodic orbit via an intermediary 5:2 resonance.

Precisely determining the intersection point requires significant precision; therefore, points on
the unstable 3:1 manifold and stable 2:1 manifold that are the closest (≈ 10−5 NDU) to each other
are considered to depict the transfer trajectory. The point on the unstable manifold is followed
backward in time, while the point on the stable manifold is followed forwards in time until both
reach within ≈ 10−6 NDU distance near their respective unstable fixed points. In theory, the exact
attainment of the fixed points necessitates an infinite time duration due to asymptotic convergence.
Therefore, for practical operational applications and the computation of realistic transfer durations,
transfer times are determined by observing the changes in the averaged semi-major axis value as
the trajectory transitions between resonances. Operationally, an orbit is considered a viable transfer
once it approaches sufficiently close to the periodic orbit.

The time required for transfer from one fixed point to another is computed for a range of Jacobi
constants. For 2.50 ≤ C ≤ 3.07, the direct transfer trajectory from the 3:1 to the 2:1 resonance
takes approximately 28-29 days. This trajectory ceases to exist for C ≥ 3.09. However, a longer
duration transfer trajectory exists that passes from the 3:1 to the 2:1 resonance via an intermediate
5:2 resonance and takes approximately 56-57 days. These transfer times are heuristic, depending on
how one defines the beginning and end of the transfer. The results indicate that change in transfer
time remains nearly insignificant to changes in the Jacobi constant for both types of transfers, re-
spectively. Also note that if a transfer is found from the 3:1 to the 2:1 resonant orbit, then a transfer
from the 2:1 to the 3:1 is found via the time-reversal symmetry of the CR3BP equations, Eq. (1).

IX. CONNECTIONS WITH L1 TUBES
As first noticed in Koon et al. 20004 and elaborated upon in 200132 and 2003,33 intersections be-

tween “lobes” related to invariant manifold of unstable MMR periodic orbits and “tubes” associated
with L1 Lyapunov orbits can be used to design low-energy trajectories between Earth orbits and lu-
nar orbits (also recently used by Hiraiwa et al. 20247). The first Poincaré cut of a the L1 Lyapunov
orbit stable manifold on ΣC is denoted as an “exit” from ΣC in the Earth realm. All trajectories
entering it must emerge in an “entrance” in the Moon realm, as illustrated in Figure 15.

L1

Earth

Lyapunov

Orbit

Moon
s0

s1
s2

s3
s4

s5

Exit

Entrance

Tube

Connecting

Realms

Moon Realm

Earth Realm

Figure 15: Tube dynamics: an exit leaving the Earth realm Poincaré section ΣC , taking tra-
jectories to the Moon realm.
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Figure 16: Poincaré section ΣC for C = 3.15 with L1 Lyapunov orbit stable manifold (the
Earth realm “exit” as in Figure 15) overlaying the 2:1 and 3:1 unstable resonance manifolds.

In our numerical investigations, we have come across a strong interaction between the invariant
manifolds of the 2:1 unstable periodic orbit and the stable/unstable tubes (first Poincaré cut4) for a
certain range of Jacobi constant. One such case is shown in Figure 16.

The ‘swirling’ of manifolds seen inside the L1 Lyapunov orbit cuts are a consequence of tra-
jectories ‘exiting’ the Poincaré section ΣC in the Earth realm, entering the Moon realm, and then
re-emerging in the Earth realm. This leads to numerical challenges, encountered in other contexts,
particularly atomic physics and chemistry.34

X. DISCUSSION AND FUTURE WORK

Poincaré sections at perigee provide a detailed depiction of the dynamical structure within cis-
lunar space, highlighting both stable islands and chaotic regions, all depicted in geocentric orbital
elements, which are immensely useful for cislunar space. Our results highlight the pronounced
impact of the 2:1 and 3:1 resonances, with a special focus on stable resonance widths and the ex-
pansive unstable chaotic resonance zones. Our findings underscore limitations in semi-analytical
approaches (i.e., Gallardo’s algorithm1) used to assess the influence of MMRs in cislunar space,
revealing that the CR3BP model more accurately predicts that these resonances exhibit broader
widths, with a structure hitherto unseen in other astronomical systems, which involve much small
mass ratios µ (e.g., the asteroid and Kuiper belts). Analysis of unstable periodic resonant orbits has
identified regions of chaotic dynamics characterized by interactions between stable and unstable
manifolds. Specifically, we have quantified the extent of chaotic zones associated with the 2:1 and
3:1 lunar MMRs, and depicted them in geocentric orbital elements. Furthermore, by comparing with
historic and current cataloged xGEO space objects, based on TLEs, we find that our larger regions
provide a better fit with objects known to be in the 3:1 and 2:1, compared with previous approaches,
particularly the IBEX and TESS spacecraft, respectively, which highlights the Earth-Moon system
as an astrodynamics laboratory.35 Employing these newly established resonance widths and chaotic
zones for a wider range of MMRs — an atlas of MMRs — allows for an enhanced determination of
whether space assets reside in stable or unstable orbital regimes.
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Additionally, our study demonstrates the potential for heteroclinic connections between 3:1 and
2:1 resonances within feasible time scales (operational transfer times on the order of a month),
while no such connections exist for the 4:1 resonance, due to dynamical barriers in the phase space.
This examination of MMRs using a global dynamics approach (using the CR3BP as model) en-
hances our understanding of the intricate dynamics of xGEO objects, with implications for mission
analysis, mission design, cislunar SDA and operations. Future research directions will focus on
refining methodologies to precisely determine resonance widths and chaotic zones, moving beyond
qualitative assessments. Additionally, we aim to explore the influence of 3-dimensionality (e.g.,
inclination), a significant factor contributing to the presence of secular resonances. Further investi-
gation will involve studying chaotic transport across resonances through analysis of lobe dynamics
and flux across chaotic regions. Moreover, we intend to investigate the interaction effects result-
ing from the overlap of the stable/unstable manifold tubes of the L1 Lyapunov orbit with that of
significant lunar resonances (e.g., 2:1, 5:2, and 3:1).
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