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Using the Circular Restricted Three–Body Problem to Design an
Earth-Moon Orbit Architecture for Asteroid Mining

Mark Allan Munson, Jr.

(ABSTRACT)

Engineering and technical challenges exist with the material transport of natural

resources in space. One aspect of this transport problem is the design of an orbit architecture

in the Earth–Moon system (EMS) that facilitates these resources through the mining cycle.

In this thesis, it is proposed to use the Circular Restricted 3–Body Problem (CR3BP) to

design an orbit architecture composed of L3 Lyapunov orbits, hyperbolic invariant stable and

unstable manifolds, and geosynchronous (GEO) orbits. A single shooting method (SSM) and

natural parameter continuation (NPC) numerical algorithm is used to compute a family of

L3 Lyapunov orbits. Invariant Manifold Theory (IMT) is leveraged to find the set of feasible

hyperbolic invariant stable and unstable manifolds associated with a L3 Lyapunov orbit.

Ideal L3 Lyapunov orbits are chosen to construct an orbit architecture based off favorable

metrics like orbital period, Jacobi Constant, and stability index. Manifolds that enter the

GEO and xGEO (beyond GEO) volumes are identified. Finally, a ∆V analysis for GEO to

manifold transfer is conducted. An achievement of this study is the computation of stable

L3 Lyapunov orbits. The primary contribution of this paper lies in its modeling of a L3

Lyapunov orbit architecture using the CR3BP.



Using the Circular Restricted Three–Body Problem to Design an
Earth-Moon Orbit Architecture for Asteroid Mining

Mark Allan Munson, Jr.

(GENERAL AUDIENCE ABSTRACT)

Engineering and technical challenges exist with the material transport of natural

resources in space. One aspect of this transport problem is the design of an orbit architecture

in the Earth–Moon system (EMS) that facilitates these resources through the mining cycle.

In this thesis, it is proposed to use the Circular Restricted 3–Body Problem (CR3BP) to

design an orbit architecture composed of L3 Lyapunov orbits, hyperbolic invariant stable

and unstable manifolds, and geosynchronous (GEO) orbits. L3 is a unique point in space in

a rotating frame of reference where the gravity of the Earth and Moon create a dynamical

equilibrium point. Due to its location in a rotating frame of reference relative to the Earth

and the Moon, orbits around L3 tend to greater stability than L1 or L2. A single shooting

method (SSM) and natural parameter continuation (NPC), which are computational methods

for finding solutions that connect discrete boundary conditions, numerical algorithm is used

to compute a family of L3 Lyapunov orbits. Invariant Manifold Theory (IMT), which is a

dynamical system structure that is invariant throughout the action of the system, is leveraged

to find the set of feasible hyperbolic invariant stable and unstable manifolds associated with

L3 Lyapunov orbits. Ideal L3 Lyapunov orbits and manifolds are chosen to construct an orbit

architecture based off favorable metrics like orbital period, Jacobi Constant, and stability

index. Manifolds that enter the GEO and xGEO (beyond GEO) volumes are identified.

Finally, a ∆V analysis for GEO to manifold transfer is conducted. An achievement of this



study is the computation of stable L3 Lyapunov orbits. The primary contribution of this

paper lies in its modeling of a L3 Lyapunov orbit architecture using the CR3BP.



Dedication

“In the beginning God created the heavens and the earth...”

- Genesis 1:1, Ignatius Revised Standard Version, Catholic Edition

and God laughed and said, “I shall make everything nonlinear and

unsolvable.”
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µ, determines the dynamics of the system. How large it is determines where

m1 and m2 reside on the x–axis. Also, how large it is determines the locations

of the Lagrange Points and all the associated dynamics in the CR3BP EMS. 55

4.1 An arbitrary reference trajectory and a perturbed trajectory are shown (Not

Drawn to Scale). A particle moves from t0 to t. x⃗R(t) is the reference state

vector, x⃗(t) is the actual state vector, and δx⃗(t) is the perturbed state vector.
˙⃗x(t) is the time rate of change of the actual state vector, and ˙⃗xR(t) is the time

rate of change of the reference state vector. . . . . . . . . . . . . . . . . . . . 64

xv



4.2 Single Shooting Method to obtain L3 Lyapunov orbits (Plotted to Scale).

Here are two small amplitude L3 Lyapunov orbits. The design variable vector
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Chapter 1

Introduction

Ever since the Stone Age, the concept of mining, that is extracting minerals from

the Earth, was essential in the technological development of man. Eventually, the Industrial

Revolution required mining techniques and technologies that, hitherto, were wholly unsuited

to meet the demand. Now, decades into the Information Age and embarking on the Second

Space Age, there are emerging supply and demand problems — Earth’s finite natural

resources versus the demand to maintain a technological society.

We should look to our ancestors to provide the solution to this dilemma. When the

European colonists migrated to the Americas, they brought tools with them, but relied upon

using the raw materials at their destination to construct civilization. Using this model, raw

materials should not be lifted from the surface of the Earth into orbit, which is expensive and

environmentally toxic; rather, raw materials should be mined from extraterrestrial objects,

like asteroids, to build space and lunar infrastructure. Using raw material at the destination,

i.e. outer space, will provide the opportunity for the successful conservation of Earth, will

favourably position the actors who exploit the opportunities, and will reduce or solve other

significant 2nd, 3rd, and nth–order effects.

However, asteroid mining has a host of technical hurdles that must be solved. Among

these difficulties are:

• Ensuring a profitable scheduling optimization of mining missions,

1
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• Modeling unconventional dynamics in the vicinity of irregular asteroid masses or

asteroid systems,

• Designing an effective extraction process of asteroid rock and regolith,

• Analyzing the implications of an asteroid fragmentation event in a multi–body (MB)

dynamical environment, and

• The methods for space resource transport.

This thesis is focused on the latter hurdle, that is, what is an advantageous orbit architecture

for asteroid mining in the Earth–Moon system (EMS), which can be leveraged for space

resource transport using Lagrange Point orbits? An architecture could be composed of high

energy, 2–Body Hohmann trajectories or low energy, MB and ballistic capture trajectories

described in [6, 7, 34]. However, this thesis will use the “most celebrated of all dynamical

problems” [83], the 3–Body Problem (3BP) or more specifically the Circular Restricted 3

–Body Problem (CR3BP) to propose an orbit architecture in the EMS for space resource

mining and manufacturing. The thesis that follows unpacks this idea technically.

1.1 Motivation of Asteroid Mining

It is said that the first trillionaire will be the one who figures out a profitable business

model for asteroid mining. Wealth and becoming the first trillionaire could be powerful

motivating factors for one to solve seemingly intractable problems. Others might see asteroid

mining as some inspirational goal that is a natural progression of human exploration and

technological advancement. True as these may be, personal or inspirational motivations

are out of scope for this thesis. Of concern are the structural macroscopic trends which
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provide a necessity for asteroid mining. Those trends are Earth conservation and geopolitical

competition.

1.1.1 Earth Conservation

A popular argument against the exploitation of space resources follows some variation

of the following argument:

1. Humans are the stewards of Earth.

2. Humans are failing in their stewardship.

3. Therefore, the moral circle of stewardship ought not enlarge to include space resources.

While the first two syllogisms are logically sound, the conclusion does not necessarily

follow. It is objectively indisputable that the present day allows for an existence, and at least

a potential existence, that encourages human flourishing more than any period in the past.

This is the case despite previous historical episodes of natural resource exploitation. Clearly,

if natural resources were never used, then life on Earth would be much more difficult. The

argument is a misidentification of historical causal mechanisms with backward logic, a fallacy.

The question is not whether it is moral to use space resources for an ordered enhancement

of human life. The proper question is, is it moral to not use space resources? Is it a moral

issue to maintain medical or educational technology, for example? These technologies require

specific minerals for microchips and digital parts. This question becomes urgent as clean

energy technology “supercharges” the demand for critical materials [2].

However, even if there are enough raw materials on Earth, the destruction to the

natural landscape required to extract them would be vast. The mining cycle is composed of

four stages: Prospecting / Exploration, Development, Extraction, and Closure / Reclamation.
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The advantage of asteroid mining compared to terrestrial mining is that there is no Closure /

Reclamation phase. Asteroids are merely objects in orbits and there is no “natural state” to

reclaim in its orbit. In fact, the Solar System has no natural state; it is chaotic, i.e. a highly

nonlinear dynamical system that is in a constant state of flux. “Reclaiming” an asteroid’s

orbit is a non sequitur. The reduction of the mining cycle from four phases to three phases

has huge implications for the conservation of Earth.

Finally, by using space resources for space infrastructure, highly toxic rocket launches

and other toxic externalities from the industry can be minimized. In 2010, the global

effects of black carbon particles emitted by rockets into the northern stratosphere was

first modelled and numerically integrated forward in time to forecast significant changes in

the atmospheric circulation and distributions of ozone and temperature [26]. Atmospheric

particulate populations also result from reentry burn ups. Recent research from the National

Oceanographic and Atmospheric Administration (NOAA) demonstrated that 10% of all the

aerosol particulates in the stratosphere are aluminium and other metals from orbital reentry

burn up events [16]. Other research efforts document the impact of the space industry upon

the atmosphere, such as [36], [18], and [54]. If an object can be manufactured in orbit with

space resources, then that means fewer rockets which would have to thrust through the

atmosphere of the Earth leaving behind toxic chemical trails.

1.1.2 Geopolitical Competition

A principle of the theory of international relations (IR) is that the international

system is anarchic, i.e. there is no centralized global authority that forces state cooperation,

and that states compete with each other for power, because power enables survival in anarchy.

There are many components that contribute to national power and a state’s ability to
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compete with other states, among these are: demographics, economics, technology, and

natural resources. Demographics, technology, and economics are endogenous in nature;

factors within the borders of a country drive these components, primarily. This may not be

the case for natural resources, which are unevenly distributed around the world.

Natural resources are extremely important to a state’s international position. A state

that has access to natural resources, especially within its national borders, has significant

advantages over a state that must trade or acquire natural resources from an external

source. The historical record abounds with examples, both violent and non–violent, of such

jockeying for natural resource possession. For example, many historians agree that a key

reason for Japanese expansionist aims in the 1930’s and 1940’s was the scarcity of sovereign

natural resources. Indeed, the Japanese leadership decided to attack the United States after

President Roosevelt enacted an oil embargo upon Japan. More recent examples include the

Organization of the Petroleum Exporting Countries (OPEC) monopoly on the international

oil market or Chinese dominance in mining rare Earth minerals. Therefore, natural resource

control is extremely important from a geopolitical perspective. While the issues of private

property and national possession in space are not settled, the national drive to secure space

resources will intensify, nevertheless.

Another property of the international system is the security dilemma, which seeks to

explain why states care about the accumulation of power. The IR scholar John Herz coined

the term in 1950:

Wherever such anarchic society has existed — and it has existed in most periods

of known history on some level — there has arisen what may be called the

“security dilemma” of men...concerned about their security from being attacked,

subjected, dominated, or annihilated by other groups and individuals. Striving to

attain security from such attack, they are driven to acquire more and more power
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in order to escape the impact of the power of others. This, in turn, renders the

others more insecure and compels them to prepare for the worst. Since none can

ever feel entirely secure in such a world of competing units, power competition

ensues, and the vicious circle of security and power accumulation is on [46].

This security dilemma can be observed in real–time. There is a second Moon race where the

signatories of the Artemis Accords seek to return to the Moon before the signatories of the

China–led International Lunar Research Station (ILRS) program. China and its associates

get there.

While the terms geopolitics and IR Theory imply some terrestrial restriction, the

theories need not be limited due to etymology. Unless something drastic occurs, there is no

central authority in the Solar System. Anarchy will still be the rule of the day, fostering the

security dilemma. While these conditions exist, a state that has easy and plentiful access

to space resources will survive and thrive in the international system. The actor or actors

who successfully develop methods and technologies to create a space mining industry will

possess significant economic, and therefore military, might. They will survive and thrive in

the “astronautical” system.

1.2 Past Asteroid Mining Missions

There are two general methods of transport which can be used in asteroid mining

missions. First, the resources can be transported in a spaceship from its origin to its

destination. This is the current method used by previous and most future asteroid mining

missions. This thesis refers to this as Method 1. Examples of Method 1 include:

• The Origins, Spectral Interpretation, Resource Identification, Security–Regolith Explorer
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(OSIRIS–REx) was the first asteroid mining mission conducted by the National Aeronautics

and Space Administration (NASA). It successfully extracted a sample from the near–Earth

asteroid (NEA) Bennu and returned it to Earth on September 2023. The sample size

is estimated to be about 250 grams, and the spaceship jettisoned it from orbit to land

in the Utah desert.

• Hyabusa and Hyabusa2 were asteroid missions executed by the Japanese space agency,

the Japanese Aerospace Exploration Agency (JAXA). On 13 June 2010, Hyabusa

successfully returned 1, 500 extraterrestrial grains, where each grain was about 10 µm

in size from the asteroid Itokawa. Hyabusa2 successfully extracted some material from

the NEA Ryugu returning a 5.4 gram sample on December 2020.

• The Tianwen–2 mission will be launched by the China Aerospace Science and Technology

Corporation (CASC) in May 2025. The mission is to collect samples from the NEA

Kamo’oalewa, which is a quasi-satellite of Earth. It is about 40 − 100 m in diameter

and possibly has origins with the Moon.

• There are other national and commercial entities with plans to execute asteroid mining

missions in the future. The U.S.–based asteroid mining company AstroForge seeks

to initiate a self–sustaining space mining architecture. In October 2023, NASA Jet

Propulsion Lab (JPL) launched a spaceship to visit the metal rich asteroid Psych,

which is in orbit inbetween Mars and Jupiter. All evidence suggests that these asteroid

mining missions will be Method 1.

The obvious problem with this approach is that sample return must be several

orders of magnitude larger to make a potential asteroid mining industry economically viable.

However, a larger return payload will require more engine thrust, which will require a larger

spaceship structure, and so forth. Therefore, a second method must be used to accomplish
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this. In general terms, the second method leverages the natural dynamical environment to

“shoot” and “catch” space resources of some economically viable and humanly sustainable

critical mass from its origins to its destination. This is Method 2. Part of this transport

problem which Method 2 seeks to solve is the design of an advantageous orbit architecture

that can facilitate the mining cycle.

1.3 Thesis Overview

The goal of this thesis is to develop an orbit architecture centered around L3 Lyapunov

orbits for transportation of space resources in the EMS. A space mining industry in the EMS

will make frequent use of different dynamical structures to transport material. To make this

goal a reality, a proper investigation of the available options must be rigorously completed.

The thesis is organized as follows:

• Chapter 2: Literature Review: Chapter 2 is broken into two sections: the first

section outlines the development of the 3BP and the CR3BP from Isaac Newton into

the 21st century, and the second section outlines the asteroid mining literature. Key

components of the first section literature review include a discussion on attempts to find

solutions, both general solutions and periodic solutions, and some brief comments on

low energy trajectories. The discussion on periodic orbits includes Lyapunov and Halo

periodic orbit families, as well. The asteroid mining literature review is concerned

mainly with Method 2 models using the CR3BP EMS, but it reviews other MB

dynamical models. The literature review identifies a large research gap in the destinations

of asteroids. There is a huge bias towards the L1 and L2 points; however, there is scant

research previously conducted on L3 Lyapunov orbits in the EMS. This is the main

goal of this thesis — fill this gap.
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• Chapter 3: Dynamic Model: The Circular Restricted 3–Body Problem

Newton’s Universal Law of Gravitation is used to derive many gravitational models

like the N–Body Problem (NBP), the 2–Body Problem (2BP), and the 3BP with

its derivative formulations. In this chapter, the CR3BP model is formulated. First,

the NBP equations of motion (EoM) are derived. Next, the basic CR3BP model

assumptions and definitions will be explicated. Then, the CR3BP EoM will be derived

using the Newtonian mechanical formalism. Next, the Jacobi Integral and Zero Relative

Velocity Curves (ZRVCs) and Zero Relative Velocity Surfaces (ZRVSs) are computed

and plotted. Next, the positions of equilibrium, Lagrange Points, are calculated.

Finally, coordinate frame transformations between arbitrary inertial and rotating frames

of reference is discussed.

• Chapter 4: Dynamical Systems Theory and Numerical Methods: First, the

State Transition Matrix (STM) and the Monodromy Matrix, M, will be derived. This

will allow the analysis of linear behavior in a local neighborhood of a nonlinear function

and a periodic solution. Second, a differential correction scheme and natural parameter

continuation (NPC) method is used to propagate the STM and compute Lyapunov

orbits. This thesis is primarily concerned with the single shooting method (SSM).

Third, Invariant Manifold Theory (IMT) will be introduced to construct hyperbolic

invariant stable and unstable manifolds, which asymptotically approach periodic orbits.

Finally, the stability of each Lagrange point and Lyapunov orbit is analyzed.

• Chapter 5: An Asteroid Mining Orbit Architecture in the Earth–Moon

System: Chapter 5 outlines the results and examines the research question: what

is an advantageous orbit architecture for asteroid mining in the EMS, which can be

leveraged for space resource transport using Lagrange Point orbits? First, the phase

space of L3 Lyapunov orbits is analyzed to determine which trajectories optimize
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access to the economic centers of gravity in cislunar space, i.e. the Earth and Moon.

Second, orbital period, Jacobi Constant, and stability index are identified as key

metrics to determine advantageous orbits. Third, how the hyperbolic invariant stable

and unstable manifolds of the Lyapunov orbits can be leveraged to connect orbit

architectures is discussed. Finally, the feasibility of GEO transfer to and from L3

Lyapunov hyperbolic invariant stable and unstable manifolds is computed. Throughout

these discussions, L3 Lyapunov orbits will be compared to L1 and L2 Lyapunov orbits

in the EMS.

• Chapter 6: Conclusion: A summary of results of the research question is outlined,

which includes limitations of the results and the wider implications of the research.

Finally, recommendations for future work are provided.

It is noted that instead of simply stating known dynamics, detailed derivations are

described in this thesis, particularly in Chapters 3 and 4. The author laments periodic

inadequate explanations in some aspects of the technical literature, which caused multiple

sessions of deep study to understand the logic flow. The hope is that this thesis will serve

as a reference so that future students can avoid the stumbling blocks experienced in the

production of this thesis.



Chapter 2

Literature Review

The scholarly literature on the 3BP, and specifically the CR3BP is vast and mature.

This maturity is due primarily to its longevity and centrality in the development of celestial

mechanics and what became known as dynamical astronomy. Indeed, dynamicists and

mechanicians studied the problem since Isaac Newton. Even early on, there was massive

research conducted on the 3BP. According to E.T. Whittaker, from 1750 to the early 20th

century more than 800+ papers were published on the topic [83] as well as many memoirs,

some monumental and most forgettable. Since the invention of the computer and the dawn of

the Space Age, this scholarly production exponentially increased. In stark contrast, although

the concept existed for many decades, the asteroid mining technical literature is still in

the developmental stages, as there are many techincal and practical hurdles that require

solutions.

This literature review will first outline the development of the 3BP and CR3BP from

Isaac Newton into the 21st century. Then, the research conducted on Method 2 in 2B

and MB regimes will be summarized. It is beyond the scope of this thesis to provide an

exhaustive review of all the relevant literature to date. However, the seminal works and

pivotal advancements in the field will be highlighted and discussed.

11
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2.1 The Circular Restricted 3–Body Problem

Like many things in mechanics, the 3BP originated from the mind of Sir Isaac Newton.

In his monumental work, Philosophiae Naturalis Principia Mathematica or simply Principia,

he formulated what is now called Newtonian gravity, which is based on a geometric insight

called an inverse square law [11]. After this formulation, which is also referred to as the

1–Body Problem, he logically attempts to generalize his technique to two bodies. This is

called the 2BP — nothing too complex thus far. Newton solved the 2BP geometrically.

However, it was Johann Bernoulli in 1710 who demonstrated that the resultant motion

of one particle under the gravitational influence of another particle, i.e. a 2BP, traces

out a conic section — a hyperbola, parabola, circle, or ellipse [4]. Also, it was not until

the Swiss mathematician and physicist Daniel Bernoulli, son of the aforementioned Johann

Bernoulli, developed an analytical solution for the 2BP in his work that was awarded the

1734 French Academy Grand Prix in Mathematics [5]. The Principia forms the basis of

Classical Mechanics, also called Newtonian or Vector Mechanics.

When a third body is added, the dynamics become infinitely complex and, as it turns

out, impossible to solve analytically in a closed form solution. To “solve analytically” means

to find the exact solution of some number of differential equations, and “closed form solution”

means producing a solution in the form of a finite amount of functions and mathematical

operations. This non–integrability of the 3BP is due to the fact that the EoM are three,

second order, ordinary differential equations, and only ten analytical integrals exist: three

integrals from conservation of angular momentum, one integral from energy, and six integrals

from the motion of the barycenter of the system [74]. In fact, the German mathematician

and astronomer Heinrich Bruns demonstrated in 1887 that the Vielkörper–Problems or

the Many–Body Problem does not have more algebraic integrals independent of the ten
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Figure 2.1: Isaac Newton’s drawing of the 3BP from “Book 1: The Motion of Bodies” in
The Principia [11] (Not Drawn to Scale). Newton used a notation similar to the Copernican
model: “S” (Sol) represents the Sun, the “P” (Planeta) represents the Moon, and “T” (Terra)
represents the Earth. CADB is the orbit of the Moon. PT is the radius of the Moon’s orbit
around the Earth, and ST is the radius of the Earth’s orbit around the Sun. The rest of the
geometry is used in his exposition of the model.

classical integrals outlined above [10]. This is called Bruns Theorem [80]. Building on this

theorem, the French polymath Henri Poincaré extended Bruns’ conclusion to encompass

the nonexistence of any transcendental integrals [66]. Poincaré also demonstrated in his

seminal three volume work Les Méthodes Nouvelles de la Mécanique Céleste that the NBP

is unsolvable in a closed–form solution, and he also showed that the Jacobi Integral is the

only integral of motion in the Restricted 3–Body Problem (R3BP) [67]. The entire effort

from dynamicists and mechanicians to analytically solve the 3BP is succinctly summed-up

in a comment Newton made to the English astronomer John Machin that “...his head never

ached but with his studies on the moon” [63].

Leonard Euler was the first to formulate the R3BP in a rotating frame of reference, but

it was Poincaré who coined the word “restreint” or “restricted” [40, 67]. Euler was also the

first to discover the collinear particular solutions of the R3BP, despite the conventional name

Lagrange Points, which are along the line of syzygy (i.e., along the x–axis) in the rotating
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frame of reference [4]. This formulation allowed him to derive time independent differential

equations, which he was the first to do [61]. Joseph–Luis Lagrange found the particular

solutions for the equilateral phase in his memoir Essai sur le Probléme des Trois Corps,

which was submitted to the French Academy in 1772 [60]. Carl Jacobi demonstrated in 1836

the existence of an integral of motion for the R3BP referred to as Jacobi’s Integral or Jacobi’s

Constant [50]. Several decades later, the American astronomer George W. Hill applied the

Jacobi Constant to define bounding contours, now called Zero Relative Velocity Curves

(ZRVCs), from which the Moon can never leave [47]. This concept can be generalized and

the ZRVC and Zero Relative Velocity Surfaces (ZRVSs) can be found for any infintestimally

small object compared to the primaries.

Over the years, there were many attempts to produce a general solution to the

dynamical problem. However, all the credible procedures yielded solutions that were not

practical or did not yield useful qualitative dynamical information. This explains why many

do not accept Karl Sundman’s, a Finnish mathematician, or Wang Diu-Dong’s, a Chinese

mathematician, “solutions” because both are an infinite series of functions and mathematical

operations with an extremely slow rate of computational convergence, and the solutions are

not a continuously differentiable function of time and its initial conditions [69, 79]. As such,

neither is an analytically closed form solution. Aside from particular solutions like Lagrange

Points and general solutions like Sundman’s infinite series, there is another type of solution

called a periodic solution or periodic orbit. Poincaré demonstrated that there are an infinite

number of periodic orbits in any Restricted 3–Body system [67]. The German astronomer

and physicist Karl Schwarzschild reframed Poincaré’s discovery in the language of phase

space: “In an arbitrarily close neighborhood of any point in the phase space there is a point

representing a periodic orbit” [80]. In 1920, Forest Ray Moulton published Periodic Orbits,

which showcased research conducted by himself and his students to lay the groundwork for a
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new lunar theory [76]. George H. Darwin also wrote a monograph of the same name in 1897,

where he discussed the mathematical and numerical methods of computing periodic orbits

[13]. In a time before computers, Darwin’s work was very important because it “excellently

carried out at the cost of a great amount of labor...specific numerical results for many orbits”

[59]. The Swedish–Danish astronomer Elis Strögren led a similar research group as Moulton

and was based at the Copenhagen Observatory [4]. Their work on periodic orbits in the

restricted problem is called the Copenhagen Problem [4].

For the purposes of this thesis, there are two kinds of periodic orbits worth mentioning:

Lyapunov orbits and Halo orbits. Because Lyapunov orbits are in–plane, two dimensional

orbits, they are computationally less expensive then the three dimensional Halo orbits. As a

result, the orbits have a longer history in the literature. Lyapunov orbits were named after

the Russian mathematician Aleksandr Mikhailovich Lyapunov (1857–1918) for his work on

nonlinear systems and his famous direct and indirect methods of stability analysis [44]. The

Swiss mathematician John V. Breakwell and his student Robert W. Farquhar invented the

concept of a Halo orbit. In 1968, Farquhar published the first computation of a Halo orbit

[41]. In 1973, Farquhar and Kamel successfully derived analytical solutions for quasi–periodic

orbits around Lagrange Point 2 or L2 in the EMS using the Lindstedt–Poincaré procedure

[42]. In 1979, Breakwell and Brown computed the Halo orbit families for L1 and L2 in the

EMS, where each Halo family has a range of stable orbits that arise from nonlinearities in

the dynamical environment [9]. In 1984, Howell and Breakwell analyzed this range of stable

orbits called Near Rectilinear Halo Orbits (NRHOs) that form almost perpendicular to the

x− y plane of the primaries [49]. Howell also investigated Halo orbits for varying values of

the mass parameter, µ, and analyzed stability of collinear Lagrange Point NRHOs [48].

In 1967, Victor Szebehely wrote the first comprehensive, modern book on the theory

of the R3BP and its applications titled Theory of Orbits: The Restricted Problem of Three
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Bodies. During the 1960’s and 1970’s, the use of computers to numerically approximate

equations of motion opened new avenues of research in the R3BP. C.C. Conley used the

R3BP to produce low energy trajectories [12]. Under the advisement of Conely, Richard

McGehee showed that there are homoclinic and heteroclininc orbits that form tubes in

the phase space [56]. Previously mentioned, Edward Belbruno and John Miller conducted

pioneering work on ballistic capture and the weak stability boundary [6, 8]. Their work was

expanded upon by [37]. Koon et al integrated the use of dynamical systems theory and the

3BP to demonstrate methods for space mission design [38]. Other important works in book

and text format are those of [19, 20, 21, 22, 55, 69].

2.2 Asteroid Mining

As previously stated, there are many technical challenges that require solutions to

make asteroid mining viable. In this thesis, solutions for Method 2 are explored. The

academic literature on Method 2 can be broadly divided into four categories:

1. Asteroid resources are transported in a 2B Earth or Sun system,

2. Asteroid resources are transported in a MB EMS,

3. Asteroid resources are transported in a MB Sun–Earth system (SES), or

4. Asteroid resources are transported in a mix of category two and category three.

In addition to these categories, the academic literature on MB dynamics primarily focuses on

designing a destination orbit architecture centered around the dynamical structures Lagrange

Point 1 (L1) and Lagrange Point 2 (L2) in the EMS or the SES. A large gap in the research

exists analyzing an orbit architecture centered around Lagrange Point 3 (L3) in either system.
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Figure 2.2 situates this thesis within the relevant technical literature and demonstrates where

the aforementioned research gap resides.

This literature review found one published research paper that explored an L3 orbit

architecture by the mathematician Ángel Jorba and a PhD student Begoña Nicolás in the

journal Communications in Nonlinear Science and Numerical Simulation. They used the

Earth–Moon–Sun Planar Bicircular Problem (PBCP) model to capture NEAs in a local

neighborhood of L3 of the EMS using hyperbolic invariant stable manifolds of invariant

tori around L3 [51]. The main difference between this work and the work of Jorba and

Nicolás (2021) is that the Bicircular Problem is a time dependant, periodic model where the

dynamical structures are instantaneous equilibrium points as opposed to the time independent,

and therefore time invariant, Lagrange Point dynamical structures in the CR3BP.

There are several research studies that apply a 2B model. In Sánchez and McInnes

(2012), using the patched conic approximation, a resource map is created that provides a

comparison of the mass of resources as a function of energy required to retrieve them. The

∆V required to capture the material in an Earth–centric Keplerian orbit can be estimated

as a function of the size of the asteroid [73]. Similarly, a patched conic–3–body (3B) model

was used by Hasnain, Lamb, and Ross (2012) to develop an algorithm that incorporated

accelerations and impulsive thrust changes required to direct a NEA to a close–Earth approach

[39]. However, a completely novel approach was taken by Ionescu, McInnes, and Ceriotti

(2022). A two spaceship method was developed where a “pitcher” spaceship is stationed

at the asteroids’ orbital origin, and it deflects them towards a “catcher” spaceship which

captures the asteroids into an Earth–centric orbit [25]. Ionescu, McInnes, and Ceriotti

(2022) is one of the several papers that significantly influenced this thesis. Specifically, the

concept of material transport via natural dynamics vice some impulsive or low thrust is a

centerpiece of this thesis. Using 2B models for Method 2 asteroid capture work for rough
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estimates or to produce initial conditions for medium or high fidelity models. However, the

models ignore other bodies, like the Sun or the Moon, which will have a significant effect

upon its trajectory.

There is a larger research base that applies a MB dynamics model, which is either

computed in the SES, or a mix of the EMS and SES. For example, Tan, McInnes, and

Ceriotti (2017) used the Circular Restricted 4–Body Problem (CR4BP) to design a method of

“direct” capture, where an asteroid is given an initial impulse in the CR4BP, then it receives

a second impulse onto a hyperbolic invariant stable L2 manifold in the EMS of the CR3BP

[31]. It is important to note that a CR4BP is merely patched–CR3BPs. A patched–CR3BP

example is provided by Mingotti, Sánchez, and McInnes (2014) who computed and plotted

Lagrange points, distant prograde orbits (DPOs), and distant retrograde orbits (DROs) to

design asteroid parking orbits [23]. Imagining an International Transfer Vehicle operating

in an intersolar system mining industry, Farquhar, Dunham, Guo, and McAdams (2004)

investigated the Sun–Earth L2 orbits for use as an asteroid mining staging area [35]. Using a

Keplerian Map, a semi–analytical approximation method of the CR3BP, Neves and Sánchez

(2015) designed Sun–Earth L1/L2 capture orbits for asteroid retrieval missions [62].

One of the primary goals of Method 2 is the minimization of energy usage. One

method for this minimization is through the utilization of gravity assist flybys. There are

several examples of this in the literature. Tan, Shen, and Ma (2022) used the CR3BP and

showed that designing L1 and L2 Lyapunov parking orbits for low amplitude asteroids that

do a lunar flyby could require less energy and a reduced time of flight compared to other

capture methods [29]. In the same vein, Tan, Zhang, and Li (2023) used the CR3BP to

design L1 and L2 orbits in the SES with a lunar flyby [30]. Designing a more exciting

capture method, Tan, Zhang, and Wang (2021) used the CR3BP in the SES to design an

Earth flyby capture method [28]. Also, using an Earth flyby, Tan, McInnes, and Ceriotti
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(2018) designed trajectories with and without aerobraking, into an L1/L2 Lyapunov orbit in

the Sun–Earth CR3BP system for an asteroid [27].

There is a general consensus that the most efficient and effective way to implement

an asteroid mining industry is to focus on the near–Earth Objects (NEOs) and NEAs. This

consensus is reflected in the literature that explicitly studies the dynamics of retrieving

these objects. For example, Yárnoz, Sánchez, and McInnes (2013) develop a catalogue of

Easily Retrievable Objects (EROs) which are candidates for transport using the dynamics of

invariant manifolds to planar and vertical Lyapunov orbits of the collinear Lagrange Points

in the SES of the CR3BP [17]. Similarly, Baoyin, Chen, and Li (2010) considered NEOs,

that satisfy a low Jacobi energy criterion, to be captured into an Earth orbit near L1 in the

SES. [24]. A low Jacobi energy criterion is simply one metric of several potential others to

decide if the object is “easily retrievable”. Also analyzing NEOs, Tyler and Wittig (2021)

used invariant manifolds in the Sun–Earth–Moon system of the CR4BP to design capture

trajectories for NEOs [82]. Lladó, Ren, Masdemont, and Gómez (2014) studied the feasibility

of capturing a NEA in a L2 orbit in the SES using a 4th–order Runge Kutta trajectory

optimization algorithm [32]. Other examples incorporated thrust, either impulsive or just

an initial pulse, to design capture strategies. For instance, Tang and Jiang (2016) integrated

low-thrust propulsion with invariant manifolds to develop capture trajectories for NEOs [81].
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Figure 2.2: Literature review diagram which situates this thesis within the relevant technical
literature. The vertical axis indicates the dynamic model, which begins with the 2B model
on the top and moves down towards higher fidelity models like the CR3BP model and other
MB models. The dashed horizontal line is the boundary between 2B dynamics and other MB
models. “EMS & SES” indicates research that employs both systems. The “L1 Orbits” arc
(below 2B models) demarcates research that uses L1 for destination orbits. The “L2 Orbits”
arc (below 2B models) demarcates research that uses L2 for destination orbits. The dotted
mesh indicates research that uses L1 and L2 for destination orbits. This thesis investigates
part of a large gap in the research, where space resources are brought to L3 Lyapunov orbits
in the EMS. This is indicated in the bottom left of the diagram. NOTE: Due to the specifics
of each research paper, this visual division is not perfect, but it helps to visually situate the
research of this thesis within the broader technical literature.



Chapter 3

Dynamic Model: The Circular

Restricted 3–Body Problem

In the Principia, Newton formulated his famous Three Laws of Motion and Universal

Gravitation. In a mathematically elegant and aesthetically beautiful expression, the Law

of Gravitation states that one body produces a gravitational attraction upon another body

with a force that is inversely proportional to the square of the distance between them [34].

With similar brilliance, the 2nd Law of Motion states that the total external force on a

particle equals the product of the particle’s inertial mass and its inertial acceleration [84]. It

is expressed mathematically as:

F⃗ =
Id

dt
(mI v⃗) =

Id

dt
(mIR⃗′) =

Id

dt
(I p⃗) = mI a⃗ (3.1)

where F⃗ is the external force vector applied, m is the inertial mass, R⃗′ is the inertial position

vector time rate of change, I v⃗ is the inertial velocity vector, and I a⃗ is the inertial acceleration

vector of the particle. The inertial reference frame is defined as I = {O, x̂, ŷ, ẑ} and x̂×ŷ = ẑ.

An inertial reference frame is also referred to as a sidereal reference frame in the literature.

This thesis adopts the former modern convention. The superscript I indicates with respect

to an inertial frame of reference, and the overbar, ⃗ , indicates a two or three element vector.

As a matter of convention, the inertial mass notation will not have the I superscript due

21
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to The Principle of Equivalence, which states the gravitational mass and inertial mass are

equal. Also, any variable without the overbar, ⃗ , indicates a scalar variable. In this thesis,

all vector and vector derivative notation is adopted from [52]. The prime notation, ′, on

derivatives indicates dimensional quantities. Also, the external force vector is equal to the

time rate of change of the inertial linear momentum of the particle, where I p⃗ is the inertial

linear momentum vector of the particle, as shown in Equation 3.1. Vectors in dynamics

have time histories forward in time and backward in time, in general. To ease the notational

burden and unless stated otherwise, it is assumed that vectors are evaluated with respect to

time, “t”.

Using Newton’s 2nd Law and modern notation, the expression of Newton’s Universal

Law of Gravitation is:

IF⃗g( ⃗BR12) = − Gm1m2

∥ BR⃗12 ∥2
⃗BR12

∥ BR⃗12 ∥
= − Gm1m2

∥ BR⃗12 ∥2
BR̂12 and BR⃗12 =

IR⃗1 − IR⃗2 (3.2)

where IF⃗g is the external gravitational force vector and:

• Its direction is along the line connecting the centers of mass of the primaries, and

• Its magnitude is acting on mass m1 due to mass m2.

The force is also a function of BR⃗12, as shown in Figure 3.1. BR⃗12 is the relative position

vector of m2 relative to m1 in the body reference frame of m2, and the superscript B indicates

with respect to a body reference frame. IR⃗1 is the inertial position vector from the inertial

origin, O, to the center of mass of m1, and IR⃗2 is the inertial position vector from O to the

center of mass of m2. G is the universal gravitational constant, ∥ BR⃗12 ∥ is the magnitude

of BR⃗12, and
BR⃗12

∥BR⃗12∥
= BR̂12 is the unit vector that describes the direction of the force.

Newton’s Universal Law of Gravitation is used to derive many gravitational models
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Figure 3.1: The Newtonian Universal Law of Gravitation (Not Drawn to Scale).
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like the NBP, the 2BP, and the 3BP with its derivative formulations. In this chapter, the

CR3BP model is formulated. First, the NBP EoM are derived. Next, the basic CR3BP model

assumptions and definitions will be explicated. Then, the CR3BP EoM will be derived using

the Newtonian mechanical formalism. Next, the Jacobi Integral, ZRVCs, and ZRVSs are

computed and plotted. Next, the positions of equilibrium, Lagrange Points, are calculated.

Finally, coordinate frame transformations between arbitrary inertial and rotating frames of

reference is discussed.

3.1 The N–Body and 3–Body Problem

The EoM for the NBP will now be defined, which will directly lead to the EoM for

the 3BP via a simplification. Let there be n particles with some mass mi, and i are real

positive integers (i = 1, 2, 3, ...n). The position of each ith–mass, jth–mass, and kth–mass is

defined by the inertial position vectors IR⃗i, IR⃗j, and IR⃗k, respectively. The position vectors

are with respect to some inertial reference frame I = {O, x̂, ŷ, ẑ} and x̂× ŷ = ẑ. The relative

position of the jth–mass with respect to the ith–mass is BR⃗ij and is defined as:

BR⃗ij =
IR⃗i − IR⃗j and j = 1, 2, 3,...n, (3.3)

where j are real positive integers.

The goal of the NBP is:

“Given the positions and velocities of the bodies of known mass at some initial

time, find the positions and velocities of the bodies at any other time” [68].

Figure 3.2 demonstrates a three dimensional configuration of the NBP dynamic model.
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Figure 3.2: The N–Body Problem (Not Drawn to Scale).
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To derive the EoM, one sums over the n − 1 system of masses using Equations 3.1

and 3.2:
IF⃗g = mi

IR⃗′′
i = −Gmi

n∑
j=1

mj

∥ BR⃗ij ∥3
BR⃗ij (j ̸= i) (3.4)

IR⃗′′
i = −G

n∑
j=1

mj

∥ BR⃗ij ∥3
BR⃗ij (j ̸= i). (3.5)

Also, n = 3 in the 3BP, so:

IR⃗′′
1 = −G

m2

∥ BR⃗12 ∥3
BR⃗12 −G

m3

∥ BR⃗13 ∥3
BR⃗13 (3.6)

IR⃗′′
2 = −G

m1

∥ BR⃗21 ∥3
BR⃗21 −G

m3

∥ BR⃗23 ∥3
BR⃗23 and (3.7)

IR⃗′′
3 = −G

m1

∥ BR⃗31 ∥3
BR⃗31 −G

m2

∥ BR⃗32 ∥3
BR⃗32. (3.8)

Only Equation 3.8 is of use in this thesis, since only the motion of m3 is relevant for a

CR3BP formulation. A 3B configuration is shown in Figure 3.3 for three arbitrary bodies

under each other’s gravitation influence.

3.2 Model Assumptions and Definitions

In order to simplify the NBP EoM into the CR3BP EoM, we must explicate our model

assumptions and model definitions. Define two masses, m1 and m2. We call these masses

primaries or, if not the same mass, the more massive body is called the primary, m1, and

the less massive body is called the secondary, m2. This thesis adopts the former convention.

The first set of assumptions in Newtonian Mechanics are intrinsic to the masses. Both

primaries are assumed to be spherically symmetric with a finite, constant, and homogeneous

mass distribution — a punctiform centrobaric mass. This is known as the Shell Theorem
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Figure 3.3: The 3–Body Problem (Not Drawn to Scale).

[11] shown in Figure 3.4. Henceforth, we define our two primaries as point masses of some

significant mass, specifically the mass of the Earth and the Moon. The mass of the third

body, m3 is restricted, hence the name of the dynamic model. It is restricted to some

infinitesimal, constant mass such that

m1 ≥ m2 >> m3 > 0 (3.9)

and, therefore, exerts a negligible gravitational influence upon m1 and m2. It is possible for

m1 = m2 like in the case of a binary star system, but it is usually the case where m1 > m2
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Figure 3.4: One of Isaac Newton’s drawings proving the Shell Theorem from “Book 1:
The Motion of Bodies” in The Principia [11] (Not Drawn to Scale). In “Section 12: The
Attractive Forces of Spherical Bodies”, he sets out in a series of propositions and theorems
to demonstrate the equivalency of a corpuscle (point mass) and a spherical body. In this
drawing, he is proving that a corpuscle, labelled “P” and “p”, is attracted to the center of
each respective spherical body per his Law of Gravitation.

like of the EMS or the SES. These assumptions about m1, m2, and m3 are reasonable for the

CR3BP, which is a medium fidelity dynamic model. In a high fidelity dynamic model like

an ephemeris, these assumptions are not adequate. For example, NASA JPL used extended

bodies not point masses to calculate the DE440 and DE441 data sets [33]. Finally, the

equivalence of any inertial mass and any gravitational mass is assumed, as previously stated

about The Principle of Equivalence.

The second set of assumptions in Newtonian Mechanics are about the nature of space

and time. Space is considered absolute, immovable, and Euclidean with the properties of

isotrophy, homogeneity, and infinite extendibility [11, 65]. Time is considered absolute, as

well. Absolute simply means uniform everywhere; space and time in Cambridge, Massachusetts

is the same in the Andromeda Galaxy. Also, time flows uniformly in one direction and is

irreversible [11]. These assumptions are reasonable as long as velocities considered do not

approach the speed of light and objects of extreme gravitation attraction, like black holes,
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are not considered. The reader may rest assured, Special Relativity and General Relativity

are outside the scope of this thesis.

Other assumptions made in this thesis are:

• All reference frames are Newtonian and abide by the principle of Galilean Relativity,

where action in space is uniform across different accelerating or moving reference frames.

This assumption is by definition in Newtonian Mechanics and is therefore reasonable

• All coordinate frames adhere to the “right hand rule” and are a dextral, orthonormal

triad of unit vectors. This assumption is a convention and is therefore reasonable.

• All matrices, vectors, and scalars are in the set of three dimensional real numbers or

complex numbers: ∀ x, y, z ϵ D = {(x, y, z) ϵ R3,C3}. This is a reasonable assumption;

the real and complex number sets are not limitations to this analysis.

• The primaries are in a fixed Keplerian circular orbit about their common barycenter.

The inclination, i, of the Moon’s orbit about the eccliptic plane, that is the plane of

the Earth’s orbit about the Sun, is about i = 5.145◦. The eccentricity, e, of the Moon’s

orbit about the Earth is about e = 0.0549. Since the inclination and eccentricity are

both small, these are reasonable assumptions. These assumptions make the CR3BP

“circular”. It is important to note that while the primaries are constrained to a plane

m3 is not and can move in three dimensional physical space.

• No external forces act on the primaries. The gravitational forces act along the line

joining the centers of mass of m1, m2, and m3. By making this assumption, the

angular momentum of the primaries is conserved. This is a reasonable assumption for

a medium–fidelity dynamic model like the CR3BP, but for higher fidelity models other

external forces must be taken into account.
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• Modelling the primaries as point masses works as long as m3 does not make a close

approach less than the radius of m1 or m2. In the idealized world of Newtonian

Mechanics, a point mass has no radius. However, in real life, celestial bodies do have

radii. If m3 makes a close approach to either primary, problems will arise. First, if the

close approach is less than the radius of the primary in question, then there is a collision.

Second, if the close approach is greater than the radius, but close enough such that
1
r2

<< 1 is very small, computational singularities may arise. To ease these numerical

difficulties, one may regularize the EoM. However, in this thesis, we assume that m3

will not get “too” close to m1 or m2, and, therefore will not require regularization of

the EoM. For more on regularization see [77, 80].

The CR3BP is best defined by [80]:

Definition 3.1. Two bodies revolve around their center of mass [barycenter] in [planar]

circular orbits under the influence of their mutual gravitational attraction and a third body

(attracted by the previous two but not influencing their motion) moves in the plane defined

by the two revolving bodies. The [circular] restricted problem of three bodies is to describe

the motion of this third body.

3.3 Newtonian Derivation of Equations of Motion for

the Circular Restricted 3–Body Problem

The EoM for the CR3BP will now be derived and proceed as follows:

• First, begin with Equation 3.8, the EoM for m3, and define the rotating reference

frame,
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• Second, non–dimentionalize the EoM,

• Third, to kinematically expand the EoM and change from the inertial reference frame

into a rotating reference frame, the Transport Equation will be applied, and

• Finally, the Pseudo Potential Function will be defined to write the CR3BP EoM

compactly.

Figure 3.5 demonstrates a CR3BP configuration, where m1,m2, and m3 are the point masses,

and IR⃗1,
IR⃗2, and IR⃗3 are the inertial position vectors, respectively. m1 and m2 are the

primaries, and m3 is the restricted mass. Like the NBP, BR⃗12, BR⃗23, and BR⃗13 represent the

relative position vectors between the three bodies.

Figure 3.5: The Restricted 3–Body Problem (Not Drawn to Scale).

They are defined as:

BR⃗12 =
IR⃗1 − IR⃗2,

BR⃗23 =
IR⃗2 − IR⃗3, and BR⃗13 =

IR⃗1 − IR⃗3. (3.10)
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θ is the angle between the inertial and rotating coordinate systems. To reiterate, the EoM

for m3, the restricted mass, is:

IR⃗′′
3 = −G

m1

∥ BR⃗13 ∥3
BR⃗13 −G

m2

∥ BR⃗23 ∥3
BR⃗23, (3.11)

where ′ indicates dimensional differentiation with respect to time, and ′′ indicates double

dimensional differentiation with respect to time. There are two reference frames. One is

inertial with the coordinate system defined as I = {O, ξ̂, η̂, ζ̂} where ξ̂ × η̂ = ζ̂. The second

is a rotating frame with the coordinate system defined as R = {O, x̂, ŷ, ẑ} where x̂× ŷ = ẑ.

A rotating reference frame is also referred to as a synodic reference frame in the literature.

This thesis adopts the former modern convention. Both reference frames have the same

origin, O, and the origin of R is the barycenter or the center of mass of m1 and m2. ζ̂ and ẑ

are parallel to the angular momentum vector of the Keplerian orbit created by m1 and m2

orbiting their barycenter. The x̂–direction, which is the line that connects m1 and m2, is

called the line of syzygy.

Since the EoM of the 3BP and the CR3BP are unsolvable in a general closed form

solution, dynamicists devised methods to better condition the equations for computation

and simplify the presentation of the problem statement. One such method was via the

non–dimentionalization of the EoM and a convention emerged that standardized how the

EoM are non–dimentionalized.

The basic units are length, mass, and time. The idea is to find quantities that produce

coefficients of one and not cumbersome fractions. First, the characteristic parameters must

be defined that will enable non–dimensionalization. The characteristic length, l∗, is:

l∗ = ∥BR⃗12∥, (3.12)
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Parameter Value Units
l∗ 385,692.5 km
t∗ 377,084.1526670386 s
G∗ 1 l∗3

m∗−τ∗2

µE 398,600.4328968393 km3

s2

µM 4,902.800582147765 km3

s2

µ 0.012150585609624 NDU
RE 6,378 km
RM 1,737 km

Table 3.1: Characteristic Parameters for the EMS.

which is set equal to the constant value of the distance between the primaries. Then, the

mass parameter, µ, is defined as:

µ =
m2

m∗ , where m∗ = m1 +m2 (3.13)

and m∗ is called the characteristic mass. It is important to note that the non–dimensional

masses of the primaries will always equal one non–dimensional unit (NDU), and the distant

between the primaries will always equal one NDU in the CR3BP model. The characteristic

time, τ ∗, is chosen such that the orbital period, T , of the primaries about their barycenter

is 2π:

τ ∗ =

√
l∗3

G∗m∗ (3.14)

and, G∗, the characteristic universal gravitation constant, is equal to 1 l∗3

m∗−τ∗2
. Table 3.1 and

3.2 are the characteristic values used to non–dimensionalize a EMS or a SES, respectively.

Using Equations 3.12, 3.13, and 3.14, the EoM are non–dimentionalized via the

following conversions:

IR⃗′′
3 =∥ I ¨⃗r3 ∥ l∗, BR⃗13 =∥ B r⃗13 ∥ l∗, BR⃗23 =∥ B r⃗23 ∥ l∗, and t =

τ

τ ∗
, (3.15)
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Parameter Value Units
l∗ 149,597,927 km
t∗ 5,022,638.184000575 s
G∗ 1 l∗3

m∗−τ∗2

µE 132,712,440,017.9870 km3

s2

µM 398,600.4328969393 km3

s2

µ 3.003480575402412x10−6 NDU
RS 695,500 km
RE 6,378 km

Table 3.2: Characteristic Parameters for the SES.

where lower case indicates a non–dimentionalized variable. Plugging everything into Equation

3.11:
I ¨⃗r3l

∗ = −(1
l∗3

m∗ − τ ∗2
)
m∗ −m2

∥ Br313 ∥l∗3
B r⃗13l

∗ − (1
l∗3

m∗ − τ ∗2
)
m∗ −m1

∥ Br323 ∥l∗3
B r⃗23l

∗ (3.16)

Id2r⃗3
dτ 2

= − 1

m∗
m∗ −m2

∥ Br313 ∥
B r⃗13 −

1

m∗
m∗ −m1

∥ Br323 ∥
B r⃗23 (3.17)

I ¨⃗r3 = − 1− µ

∥ Br313 ∥
B r⃗13 −

µ

∥ Br323 ∥
B r⃗23. (3.18)

The single overdot, ˙ , and the double overdot, ¨ , indicate differentiation with respect

to non–dimensional time and double differentiation with respect to non–dimensional time,

respectively.

Next, the Transport Equation will be implemented to transport the acceleration

vector to a rotating frame and kinematically expand the acceleration vector components

of the EoM. This equation is used because the CR3BP, by definition, is in a non–inertial

rotating frame of reference. The Transport Equation “transports” the motion from an inertial

frame to a rotating frame and vice versa. For a derivation of The Transport Equation see

[52]. The kinematic expansion results in the general acceleration equation:

I d
2

dt2
r⃗ = B d2

dt2
r⃗ + 2I ω⃗B × B d

dt
r⃗ + I ω⃗B × {I ω⃗B × r⃗}, (3.19)
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where I ω⃗B = n∗ẑ and the non–dimensional mean motion is:

n = n∗t∗ = 1, where n∗ =

√
G∗m∗

l∗3
and R d2

dt2
r⃗ = 0. (3.20)

Equation 3.19 becomes:

I d
2

dt2
r⃗ = 2nẑ × (ẋx̂+ ẏŷ + żẑ) + nẑ × {nẑ × (xx̂+ yŷ)}. (3.21)

I ¨⃗r = (−2nẏî+ 2nẋĵ + 0ẑ) + (−n2xî+−n2yĵ + 0ẑ). (3.22)

Combining 3.18 and 3.22, and using Figure 3.5 to define:

B r⃗13 = (x+ µ)̂i+ yj + zk (3.23)

B r⃗23 = (x− (1− µ))̂i+ yĵ + zk̂ (3.24)

the CR3BP EoM are:

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)
Br313

− µ(x− (1− µ))
Br323

(3.25)

ÿ + 2nẋ− n2y = −(1− µ)
Br313

y − µ
Br323

y (3.26)

z̈ = −(1− µ)
Br313

z − µ
Br323

z. (3.27)

On the left hand side of Equations 3.25, 3.26, and 3.27; ẍ, ÿ, and z̈ are the inertial

accelerations of the origin in the inertial reference frame; −2nẏ and 2nẋ are the Coriolis

accelerations in the rotating frame of reference; and −n2x and −n2y are the centripetal

accelerations in the rotating frame of reference. For simplicity, we drop n, since n = 1.
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Finally, a Pseudo Potential is used to write the EoM more compactly. It is mathematically

defined as:

U =
(1− µ)

∥ B r⃗13 ∥
+

µ

∥ B r⃗23 ∥
+

x2 + y2

2
. (3.28)

The Pseudo Potential accounts for gravitational accelerations exerted by the primaries upon

m3; these are the first two terms. And, a centrifugal acceleration experienced by m3 due to

the rotating frame of reference is the third term in the potential. The Pseudo Potential for

the EMS is plotted in Figure 3.6. The saddle points on either side of the Moon’s gravity

well and the Earth’s gravity well represent Lagrange Point 1 (L1), Lagrange Point (L2), and

Lagrange Point (L3). Also, the dark blue contour lines on either side of the Earth designate

the locations of the higher Jacobian “energy” equilibrium points, Lagrange Point 4 (L4) and

Lagrange Point 5 (L5). More will be said about these Lagrange Points later.

The gradient vector operator is applied to the Pseudo Potential to calculate its

components:

∇U = ∇{ (1− µ)

∥ B r⃗13 ∥
+

µ

∥ B r⃗23 ∥
+

x2 + y2

2
} (3.29)

∂U

∂ ∥ r ∥
= − 1

∥ r⃗ ∥2
r⃗

∥ r⃗ ∥
= Uxî+ Uy ĵ + Uz ẑ (3.30)

Ux = − 1

∥ B r⃗13 ∥2
r⃗x

∥ B r⃗13 ∥
− 1

∥ B r⃗23 ∥2
r⃗x

∥ B r⃗23 ∥
= −(1− µ)(x+ µ)

∥ r⃗13 ∥3
− µ(x− (1− µ))

∥ r⃗23 ∥3
+ x

(3.31)

Uy = − 1

∥ B r⃗13 ∥2
r⃗y

∥ B r⃗13 ∥
− 1

∥ B r⃗23 ∥2
r⃗y

∥ B r⃗23 ∥
= −(1− µ)y

∥ r⃗13 ∥3
− (µ)y

∥ r⃗23 ∥3
+ y (3.32)

Uz = − 1

∥ B r⃗13 ∥2
r⃗z

∥ B r⃗13 ∥
− 1

∥ B r⃗23 ∥2
r⃗z

∥ B r⃗23 ∥
= −(1− µ)z

∥ r⃗13 ∥3
− (µ)z

∥ r⃗23 ∥3
. (3.33)

Now, substituting Equation 3.31, 3.32, and 3.33 into 3.25, 3.26, and 3.27 to get the

compact CR3BP EoM:

ẍ =
∂U

∂x
+ 2ẏ = Ux + 2ẏ (3.34)
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Figure 3.6: EMS Pseudo Potential (Plotted to Scale). The gravity well for the Earth begins
at (−µ, 0, 0) and the gravity well for the Moon begins at (1− µ, 0, 0). The gravity wells for
the Earth and the Moon extend to +z infinity. As x and y → ∞, then U → ∞. This is
seen analytically in Equation 3.28. As x and y get larger, the squared terms dominate the
Pseudo Potential. This is also seen visually in the above figure.
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Figure 3.7: EMS Effective Potential (Plotted to Scale). The Earth gravity well formed by
the blue object represents the Earth. The Lunar gravity well formed by the yellow object
represents the Moon. The five Lagrange Points are represented by the five black dots.

ÿ =
∂U

∂y
− 2ẋ = Uy − 2ẋ (3.35)

z̈ =
∂U

∂z
= Uz. (3.36)

The Effective Potential is similar to the Pseudo Potential. It is defined with an

asterisk:

U∗ = −U = − (1− µ)

∥ B r⃗13 ∥3
− µ

∥ B r⃗23 ∥3
− x2 + y2

2
. (3.37)
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Plotting Equation 3.37 as a surface reveals useful qualitative information about the potential,

see Figure 3.7. Both the Earth and the Moon create gravity wells that shape the potential

surface, and the five Lagrange equilibrium points are distributed on top of the surface per

the defined geometry.

3.4 The Jacobi Integral: Zero Relative Velocity Curves

and Zero Relative Velocity Surfaces

In order to find the Jacobi Integral or Jacobi Constant, the only integral of motion

of the system, we take the dot product of the CR3BP EoM and the non–dimensionalized

velocity vector components:
I ¨⃗r3 · I ˙⃗r3 = ẍẋ+ ÿẏ + z̈ż (3.38)

ẋẍ = {∂U
∂x

+ 2ẏ}ẋ (3.39)

ẏÿ = {∂U
∂y

− 2ẋ}ẏ (3.40)

żz̈ = {∂U
∂z

}ż. (3.41)

Next, we sum Equations 3.39, 3.40, and 3.41:

ẍẋ+ ÿẏ + z̈ż = ẋ
∂U

∂x
+ ẏ

∂U

∂y
+ ż

∂U

∂z
= I ˙⃗r · ∂U

∂r⃗
=

dU

dt
. (3.42)

Equation 3.42 is a total derivative with ∂U
∂t

= 0, because time is invariant in the rotating

frame. It can be integrated with respect to time to get:

∫
ẍẋ+ ÿẏ + z̈ż dt =

∫
dU

dt
dt (3.43)
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1

2
(ẋ2 + ẏ2 + ż2) = U + c, (3.44)

where c is a constant of integration that is found through the initial conditions for a definite

integral. Rearranging terms and substituting in Equation 3.37:

V 2 = 2U + 2c (3.45)

C(x, y, z, ẋ, ẏ, ż) =
2(1− µ)

∥ B r⃗13 ∥
+

2µ

∥ B r⃗23 ∥
+ (x2 + y2)− V 2, (3.46)

where V =
√

ẋ2 + ẏ2 + ż2 and by convention C = −2c. C is the Jacobi Constant, which is

a function of position and velocity. It is used as a measure of energy in the rotating frame

of reference and is analogous to the energy integral of motion in the 2BP. However, it is

important to understand that the Jacobi Constant does not represent the total energy of

the system, due to assumptions inherent in the definition and model of the CR3BP. Another

difference is that a high absolute value of the energy in the 2BP indicates an energetic mass

which can occupy a larger volume of space. For the Jacobi Constant, it is the inverse, a low

absolute value indicates an energetic m3, which can occupy a higher volume of space.

As previously stated, George Hill was the first to apply the Jacobi Constant to create

ZRVCs. It is very useful to plot these ZRVCs, also called Hill’s Curves, on contour plots for

a given Jacobi Constant value. They are used to visualize accessible and forbidden regions

of motion. The accessible regions are called Hill’s Regions. The accessible regions are where

the kinetic energy is positive with a positive velocity:

1

2
(x2 + y2) > 0. (3.47)
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The forbidden regions are where the kinetic energy is negative:

1

2
(x2 + y2) < 0. (3.48)

Another way to view forbidden regions mathematically is through solving for the velocity

magnitude in Equation 3.45:

V = ±
√
2U − C (3.49)

and noticing that there are regions in space that produce a negative radicand, which makes

the velocity an imaginary number. Thus, it is physically impossible for m3 to travel into a

forbidden region — kinetic energy cannot be negative, and velocity cannot be an imaginary

number. The curves are zero velocity in the rotating frame of reference. Also, there are

multiple accessible regions. Accessible regions that surround a primary are called interior

realms. Accessible regions not connected to interior realms are called exterior realms. The

exterior realms extend to infinity.

To plot the curves, first set the velocity equal to zero and Equation 3.46 becomes:

C(x, y, z, ẋ, ẏ, ż) = 2
(1− µ)

∥ B r⃗13 ∥
+ 2

µ

∥ B r⃗23 ∥
+ (x2 + y2). (3.50)

Figure 3.8, 3.9, and 3.10 are ZRVC plots of Equation 3.50 at different Jacobi Constant

energy levels. White indicates accessible regions, and black indicates forbidden regions.

The Earth and the Moon are the blue and red points, respectively, and the red plus signs

symbolize the five Lagrange Points. Through visual inspection one can see that L1 is the

least energetically expensive to get to and, L4 and L5 are the most energetically expensive

to get to.
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Figure 3.8: ZRVCs of the EMS (Plotted to Scale). In the plot on the left, the ZRVC for C is
too high and motion is restricted to the white accessible interior regions around the Earth,
Moon, and the exterior accessible region outside of the forbidden region. In the plot on the
right, C is low enough such that the accessible interior regions around the Earth and the
Moon are now connected via transit through L1.
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Figure 3.9: ZRVCs of the EMS (Plotted to Scale). In the plot on the left, the ZRVC for
C connects all the accessible interior regions around the Earth, Moon, and the exterior
accessible region. In the plot on the right, C opens accessibility to L3. The interior and
exterior accessible regions become one accessible region.
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Figure 3.10: ZRVCs of the EMS (Plotted to Scale). In the plot on the left, the ZRVC for C
allows more access to areas once forbidden. The only remaining forbidden areas are those
in the vicinity of L4 and L5. In the plot on the right, C opens accessibility to all 5 Lagrange
points.
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There are six basic cases of the ZRVC plots. The first case is when the energy is

C > CL1, when C = 3.3280. Initially, m3 is confined to the interior accessible realms around

the Earth, the Moon, and the exterior accessible realm. However, because there is a forbidden

region separating the primaries, passage in between them is not possible at this energy level.

The second case is when CL1 = C > CL2, when C = 3.1883. This energy level makes access

to L1 and the Moon possible. The third case occurs when C = CL2, when C = 3.1722. This

makes L2 accessible and travel between the interior accessible realms and exterior accessible

realm possible. The fourth case occurs when CL2 > C = CL3, when C = 3.0121. An energy

at this level makes travel to L3 possible. The fifth case occurs when CL3 > C > CL4 = CL5,

when C = 3.003, and the only forbidden regions are in the immediate vicinity of L4 and L5.

Finally, when C < CL4 = CL5, when C = 2.988, travel to L4 and L5 is possible and all of the

position space in the rotating frame of reference is accessible. Mathematically, when m3 is

in an interior realm and near a primary, then the relative position vectors B r⃗13 and B r⃗23 are

small in magnitude and dominate the Jacobi Constant value, which contributes to a large

value. On the other hand, when m3 is far from one of the primaries, then the kinetic energy

term,
1

2
(x2 + y2), (3.51)

dominates the Jacobi Constant value, and the other terms are small because B r⃗13 and B r⃗23

are very large. Figure 3.11 combines all of the individual ZRVC plots of Figure 3.8, 3.9, and

3.10 into one plot.

A ZRVC plot is simply a slice or surface of section of a ZRVS at a given Jacobi

Constant value. Useful ZRVC plots are typically taken from the x − y plane where z = 0.

To plot the surfaces set the velocity to zero again and numerically solve for x, y, and z in
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Figure 3.11: ZRVC contours of the EMS (Plotted to Scale) combined onto one plot
demonstrating possible motion at certain Jacobi Constant energy levels.
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Equation 3.46:

0 = x2 + y2 +
2(1− µ)√

(x+ µ)2 + y2 + z2
+

2µ√
(x− 1 + µ)2 + y2 + z2

. (3.52)

Figure 3.12a, 3.12b, 3.13a, 3.14b, and 3.14a are surface plots at various Jacobi Constants.

3.5 Lagrange Points: Particular Solutions of the Equations

of Motion

Based off of the above analysis on the Jacobi Integral and the gravitational potential

of the EMS, the existence of equilibrium points or particular solutions to the CR3BP EoM

are known through analysis of the Pseudo Potential, Equation 3.28 and Figure 3.6, and the

Effective Potential, Equation 3.37 and Figure 3.7. However, it must be emphasized that

the rotating frame makes the CR3BP EoM time independent and the equilibrium points

only exist in the rotating frame. They do not exist in an inertial frame because there is a

dependence on time, and, therefore, equilibrium points cannot exist.

To find the particular solutions of the CR3BP EoM, set the acceleration and the

velocity equal to zero. These solutions are stationary equilibrium in the rotating frame, thus

Equations 3.34, 3.35, and 3.36 become:

ẍ =
∂U

∂x
= −(1− µ)(xeq + µ)

∥ r⃗13,eq ∥3
− µ(xeq − (1− µ))

∥ r⃗23,eq ∥3
= −xeq (3.53)

ÿ =
∂U

∂y
= −(1− µ)yeq

∥ r⃗13,eq ∥3
− (µ)yeq

∥ r⃗23,eq ∥3
= −yeq (3.54)

z̈ =
∂U

∂z
= −(1− µ)zeq

∥ r⃗13,eq ∥3
− (µ)zeq

∥ r⃗23,eq ∥3
= 0 (3.55)
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(a) ZRVS when C > CL1 (Plotted to Scale). The accessible interior realms of the Earth,
m1, and Moon, m2, can be seen as dark ovals. m1 is the larger of the two. The forbidden
region surrounds the two accessible interior realms; it is bounded by the exterior conic
surface, and it extends to +z and −z infinity. On the exterior of the conic surface is the
second accessible region.

(b) ZRVS when CL1 = C > CL2 (Plotted to Scale). The accessible interior realms are
now connected and transit is allowed via L1.
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(a) ZRVS when C = CL2 (Plotted to Scale). The interior and exterior accessible realms
are connected thru a small neck at L2.

(b) ZRVS when CL2 > C = CL3 (Plotted to Scale). The accessible realms combine to
form one realm with access points at L3 and in the vicinity of L2.
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(a) ZRVS when CL3 > C > CL4 = CL5 (Plotted to Scale). The accessible realms are only
restricted from small forbidden regions in the vicinity of L4 and L5.

(b) ZRVS when C < CL4 = CL5 (Plotted to Scale). The surfaces are fully separated and
motion is possible anywhere on the x− y plane.
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Lagrange Point Location A B
L1 −µ < xeq < 1− µ -1 1
L2 xeq > 1− µ -1 -1
L3 xeq < −µ 1 1

Table 3.3: Table of Collinear Lagrange Point Intervals. Study of the Effective Potential
shows that there are three extrema along the line of syzygy.

where xeq, yeq, and zeq are the equilibrium coordinates of the particular solutions. zeq = 0

follows immediately from visual inspection. This also means that all of the equilibrium

solutions for the CR3BP are on the x − y plane. The solutions of Equations 3.53 and 3.54

are called libration points or Lagrange points. There are five such solutions and are denoted

with the notation Li, where i = 1, 2, 3, 4, and 5. Euler and Lagrange showed that there are

two invariant configurations that are formed by the equilibria: a collinear and an equilateral

triangle configuration. Euler found the collinear configuration first, but naming convention

uses Lagrange’s name.

The collinear solutions are found by setting yeq = 0, since the solutions are on the

line of syzygy. Equation 3.55 simplifies to:

xeq −
(1− µ)(xeq + µ)

|xeq + µ|3
− µ(xeq − (1− µ))

|xeq − 1 + µ|3
= 0 (3.56)

and it can be further simplified to:

xeq + A
1− µ

(xeq + µ)2
+B

µ

(xeq − 1 + µ)2
= 0, (3.57)

where A and B equal ±1 contingent on the equilibrium location on the x-axis. The locations

of each collinear point are known to lie within the intervals defined in Table 3.3. These

locations can be intuited through visual inspection of the Effective Potential. There are

three extrema along the line of syzygy: one on either side of m2, the Moon, and one opposite



52 CHAPTER 3. DYNAMIC MODEL: THE CIRCULAR RESTRICTED 3–BODY PROBLEM

the Moon on the other side of m1, the Earth.

It is convention to define the collinear Lagrange Points from the primaries, so three

variables are defined:

• γ1, which is the distance between m2 and L1,

• γ2, which is the distance between m2 and L2,

• γ3, which is the distance between m1 and L3.

xeq is then defined in terms of each new variable and substituted into Equation 3.57:

xeq = 1− µ− γ1 (3.58)

xeq = 1− µ+ γ2 (3.59)

xeq = −µ− γ3 (3.60)

1− µ− γ1 −
(1− µ)

(1− γ1)2
+

µ

(γ1)2
= 0 (3.61)

1− µ+ γ2 −
(1− µ)

(1 + γ2)2
− µ

(γ2)2
(3.62)

−γ3 − µ+
(1− µ)

(−γ3)2
+

µ

(−γ3 − 1)2
. (3.63)

Equations 3.61, 3.62, and 3.63 are then expanded to get:

γ5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − µγ2

1 + 2µγ1 − µ = 0 (3.64)

γ5
2 + (3− µ)γ4

2 + (3− 2µ)γ3
2 − µγ2

2 − 2µγ2 − µ = 0 (3.65)

γ5
3 + (2 + µ)γ4

3 + (1 + 2µ)γ3
3 − (1− µ)γ2

3 − 2(1− µ)γ3 + µ− 1 = 0. (3.66)
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Lagrange Point x y z
L1 0.836915125819713 0 0
L2 1.155682165407869 0 0
L3 -1.005062645806268 0 0
L4 0.487849414400000 0.866025403784439 0
L5 0.487849414400000 -0.866025403784439 0

Table 3.4: Table of Lagrange Point locations in the EMS.

Equations 3.64, 3.65, and 3.66 are known as Lagrange’s Quintic Equations. They are

analytically unsolvable and must be numerically integrated using a root solver, like the

Newton–Raphson Method. They are 5th–order polynomials each with five total roots, four

complex and one positive real number. Only the positive real numbers provide relevant

information, therefore:

γ1 = 0.150934288580287, γ2 = 0.167832751007870, and γ3 = 0.993467265728281.

(3.67)

Now that γ1, γ2, and γ3 are found, the locations of the collinear Lagrange Points follow

immediately as shown in Table 3.4.

The equilateral equilibrium points are found through a geometric analysis vice an

analytical analysis. Visual inspection of the equilateral triangles in Figure 3.15 demonstrate

that ∥ B r⃗13 ∥ = 1 and ∥ B r⃗23 ∥ = 1, because the non–dimensional distance between m1 and

m2 is one:

cos(60◦) =
xeq

1
and sin(60◦) =

yeq
1

(3.68)

xeq =
1

2
− µ and yeq = ±

√
3

2
. (3.69)

Because the equilateral triangle is measured from m1, Earth, it is convention to shift xeq −µ

to measure it from m1. Equation 3.69 locates L4. To find L5, the y–value is simply reflected

across the x–axis. Table 3.4 lists the values of L4 and L5. See [70] for the analytical



54 CHAPTER 3. DYNAMIC MODEL: THE CIRCULAR RESTRICTED 3–BODY PROBLEM

Figure 3.15: Lagrange Point Geometry in Earth–Moon CR3BP (Plotted to Scale). This is
the convention used by NASA, the standard model, and is adopted in this thesis, where
the system is plotted such that the non–dimensional system rotation (n, mean motion) is
counterclockwise, and the Earth–Moon syzygy is in the +x–axis direction. The collinear
Lagrange Points (L1, L2, and L3) are defined via γi from each respective primary. L4
and L5 form equilateral triangles (all angles and legs are congruent, where θ = 60◦ and
∥ r⃗i3 ∥= 1) with the primaries. L4 always leads the system rotation, and L5 always lags the
system rotation.
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Figure 3.16: Lagrange Point Geometry in Earth–Moon CR3BP, Zoomed–in (Plotted to
Scale). m1, Earth, is one vertex of the equilateral triangle. Due to assumptions inherent
in Newtonian mechanics, the actual barycenter of the EMS resides inside of the Earth.
Newtonian mechanics assumes massless and dimensionless particles. In reality the system
barycenter is about 4, 671km from the center of m1 (Earth), and the radius of the Earth is
about 6, 371km. The barycenter is also the center of rotation, where the rotation is ω⃗ = nẑ.
The mass parameter, µ, determines the dynamics of the system. How large it is determines
where m1 and m2 reside on the x–axis. Also, how large it is determines the locations of the
Lagrange Points and all the associated dynamics in the CR3BP EMS.
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justification to claim that L4 and L5 create an equilateral triangle.

3.6 Reference Frame Transformations

There are many advantages to plotting trajectories and manifolds modelled in the

CR3BP in a rotating frame of reference. One such advantage is that it is easier to identify

dynamical and qualitative structure and patterns in an otherwise chaotic and very nonlinear

dynamical environment. However, there is great use viewing trajectories in an inertial frame

of reference, as well. Therefore, reference frame transformations are used to swap between

rotating and inertial reference frames. Technically, a reference frame and a coordinate system

are not synonymous, but generally a reference frame transformation implies a coordinate

system transformation as well. For the purposes of this thesis, only transformations between

a rotating frame of reference and an arbitrary inertial frame of reference is required.

Due to model assumptions, there is only one angle, θ, that differentiates a rotating

frame from an arbitrary inertial frame (see Figure 3.5). θ separates the x − y plane of the

rotating frame and the ξ − η plane of the inertial frame. A frame transformation is a single

rotation around the z or ζ axis. A rotation from the rotating reference frame to the inertial

reference frame is defined by the linear equation:

ξ⃗ = ICRx⃗ (3.70)


ξ

η

ζ

 =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



x

y

z

 , (3.71)

where ξ⃗ is the inertial frame position vector, ICR is the direction cosine matrix or rotation
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matrix that transforms a vector from an a rotating vector basis to an inertial vector basis

(it is important to note that one reads a rotation matrix from right to left), and x⃗ is the

rotating frame position vector. In order to do the reverse operation, that is, transform from

an inertial vector basis to a rotating vector basis, one simply multiplies both sides by the

transpose of the rotation matrix to get:

x⃗ = [RCI ]T ξ⃗ (3.72)


x

y

z

 =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1


T 

ξ

η

ζ

 . (3.73)

In order to create a rotation matrix that includes the velocities, a 6x6 rotation matrix

must be derived. We recall that the two reference frames are aligned such that θ = 0◦, and

the mean motion is n = 1. Using the Transport Equations again on Equation 3.71 to get:

I d

dt
r⃗ = R d

dt
r⃗ + I ω⃗R × r⃗ (3.74)

I ˙⃗r = R d

dt
{


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



x

y

z

}+ {nẑ ×


x

y

z

}. (3.75)

The time derivative of the rotating position vector is taken and the cross product of the

second term is expanded to get:

I ˙⃗r =


ẋcos(θ)− ẏsin(θ)

ẏcos(θ) + ẋsin(θ)

ż

+


−ny

nx

0

 . (3.76)
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Simplifying,

I ˙⃗r =


ẋ

ẏ

ż

+


−ny

nx

0

 =


ẋ− ny

ẏ + nx

ż

 . (3.77)

Using Equation 3.77 as a check, we take the time derivative of ICR to get:

IĊR =


−sin(θ) cos(θ) 0

cos(θ) −sin(θ) 0

0 0 0

 . (3.78)

Combining ICR and IĊR:



ξ

η

ζ

ξ̇

η̇

ζ̇


=



cos(θ) sin(θ) 0 0 0 0

−sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0

−sin(θ) −cos(θ) 0 cos(θ) −sin(θ) 0

cos(θ) −sin(θ) 0 sin(θ) cos(θ) 0

0 0 0 0 0 1





x

y

z

ẋ

ẏ

ż


. (3.79)

Equation 3.79 is a 6x6 matrix rotation that transforms a rotating frame of reference

expressed in rotating coordinates to an inertial state with associated coordinates. It can be

written more compactly as:

IR⃗ =

ICR 03x3

IĊR ICR

 Rr⃗ (3.80)

where IR⃗ is the inertial position vector, and Rr⃗ is the rotating position vector. If one wishes

to transform in the reverse direction, one simply multiplies its transpose to both sides of the
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equation. The transpose is written as:

Rr⃗ =

RCI RĊI

03x3
RCI


T

IR⃗. (3.81)

The application of this rotation matrix is no different from any other rotation of a

system state vector. Every state at time t must be rotated by this rotation matrix to get

the correct state in the new reference frame and coordinate system.



Chapter 4

Dynamical Systems Theory and

Numerical Methods

Dynamical Systems Theory (DST) emerged with the research and writings of Henri

Poincaré and George Birkhoff. Up to the late 19th and early 20th century, dyanamicists and

mechanicians relied primarily upon analytical and quantitative methods to solve problems.

Scientists and engineers began to explore other methods to solve nonlinear dynamics, and

Poincaré and Birkhoff developed qualitative methods that are still in use today.

One of the many techniques scientists and engineers turned towards were numerical

methods. These methods were devised to approximate solutions. The design of these

numerical methods had to be clever because nonlinear equations have unique properties.

For example, the Superposition Principle, which allows a linear system to be decomposed

into parts, analyzed, then reconstituted without any loss of dynamics, does not apply to

nonlinear systems [53]. Another example is that the CR3BP EoM are chaotic. Here chaos

is referred to in the strict mathematical sense defined by [78] as “non-periodic long-term

behavior in a deterministic system that exhibits sensitive dependence on initial conditions”.

DST and numerical methods are techniques that make dynamic models like the

CR3BP practical and useful. They are the topics of this chapter. First, the State Transition

Matrix (STM) and the Monodromy Matrix, M, will be derived. This will allow the analysis

of linear behavior in a local neighborhood of a nonlinear function and a periodic solution.

60
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Second, a differential correction scheme and NPC are used to propagate the STM and

compute Lyapunov orbits. This thesis is primarily concerned with the single shooting

method (SSM). Third, Invariant Manifold Theory (IMT) will be introduced to construct

hyperbolic invariant stable and unstable manifolds, which asymptotically approach periodic

orbits. Finally, the stability of each Lagrange point and Lyapunov orbit is analyzed.

4.1 The State Transition Matrix

We recall that the rotating frame in the CR3BP is time invariant; this simplifies

the STM derivation. A time varying STM is derived via the Peano–Baker Series, and the

derivation is much more complex. As previously stated, the CR3BP EoM are nonlinear and

the general form of the 1st–order, homogeneous, and time invariant nonlinear differential

equations is:
˙⃗x(t) = f(x⃗(t)) with the initial condition x⃗(t0) = x0, (4.1)

where x⃗(t) is the state vector dependant on time, and f⃗(t) are the nonlinear vector functions

dependant on time. In this chapter, the notation for vectors and matrices that are functions

of time will be explicit as opposed to the previous chapter. Also, the reference frame

superscripts are dropped; the rotating frame of reference is assumed. In the context of

this thesis, the state vector specifies the location of m3 on any given trajectory, orbit, or
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manifold in the system. The state vector is defined as:

x⃗(t) =



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


(4.2)

and the first time derivative of x⃗ is:

˙⃗x(t) =



ẋ(t)

ẏ(t)

ż(t)

ẍ(t)

ÿ(t)

z̈(t)


=



ẋ(t)

ẏ(t)

ż(t)

Ux(t) + 2ẏ(t)

Uy(t)− 2ẋ(t)

Uz(t)


, (4.3)

where the acceleration magnitudes come directly from Equations 3.34, 3.35, and 3.36, the

CR3BP EoM.

To derive the STM, the state vector is slightly perturbed off its reference trajectory

by some force:

δx⃗(t) = x⃗(t)− x⃗R(t), (4.4)

where δx⃗(t) is the perturbed state vector, x⃗(t) is the actual state vector, and x⃗R(t) is the

reference state vector. Next, substitute Equation 4.4 and its time derivative:

δ ˙⃗x(t) = ˙⃗x(t)− ˙⃗xR(t) (4.5)
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into Equation 4.1 to get:

δ ˙⃗x(t) + ˙⃗xR(t) = f(δx⃗(t) + x⃗R(t)). (4.6)

Then, a Taylor Series expansion is executed and terms higher than the first order are

discarded (clumped together in “HOT”, meaning higher order terms):

δ ˙⃗x(t) + ˙⃗xR(t) ≈ f⃗(x⃗R(t)) +
∂f⃗(t)

∂x⃗(t)

∣∣∣
x⃗R(t)

δx⃗(t) +HOT. (4.7)

It is noted that ˙⃗xR(t) = f⃗(x⃗R(t)). So, Equation 4.7 becomes:

δ ˙⃗x(t) ≈ ∂f⃗(t)

∂x⃗(t)

∣∣∣
x⃗R(t)

δx⃗(t) = A(t)δx⃗(t). (4.8)

The matrix A(t) is called the Jacobian Matrix with ith, jth–entries of ∂fi(t)
∂xj(t)

, that is,

an nxn matrix of partial derivatives of the vector functions with respect to the state vector

which is continuous and defined for all t. The Jacobian Matrix contains information that

describes the sensitivities of the EoM to the state vector of the system. Taking the partial

derivative of the nonlinear vector functions, f⃗(t), with respect to the state vector, x⃗(t), the

general form of the Jacobian is defined as:

A(t) =



∂ẋ(t)
∂x(t)

∂ẋ(t)
∂y(t)

∂ẋ(t)
∂z(t)

∂ẋ(t)
∂ẋ(t)

∂ẋ(t)
∂ẏ(t)

∂ẋ(t)
∂ż(t)

∂ẏ(t)
∂x(t)

∂ẏ(t)
∂y(t)

∂ẏ(t)
∂z(t)

∂ẏ(t)
∂ẋ(t)

∂ẏ(t)
∂ẏ(t)

∂ẏ(t)
∂ż(t)

∂ż(t)
∂x(t)

∂ż(t)
∂y(t)

∂ż(t)
∂z(t)

∂ż(t)
∂ẋ(t)

∂ż(t)
∂ẏ(t)

∂ż(t)
∂ż(t)

∂ẍ(t)
∂x(t)

∂ẍ(t)
∂y(t)

∂ẍ(t)
∂z(t)

∂ẍ(t)
∂ẋ(t)

∂ẍ(t)
∂ẏ(t)

∂ẍ(t)
∂ż(t)

∂ÿ(t)
∂x(t)

∂ÿ(t)
∂y(t)

∂ÿ(t)
∂z(t)

∂ÿ(t)
∂ẋ(t)

∂ÿ(t)
∂ẏ(t)

∂ÿ(t)
∂ż(t)

∂z̈(t)
∂x(t)

∂z̈(t)
∂y(t)

∂z̈(t)
∂z(t)

∂z̈(t)
∂ẋ(t)

∂z̈(t)
∂ẏ(t)

∂z̈(t)
∂ż(t)


. (4.9)
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Figure 4.1: An arbitrary reference trajectory and a perturbed trajectory are shown (Not
Drawn to Scale). A particle moves from t0 to t. x⃗R(t) is the reference state vector, x⃗(t)
is the actual state vector, and δx⃗(t) is the perturbed state vector. ˙⃗x(t) is the time rate of
change of the actual state vector, and ˙⃗xR(t) is the time rate of change of the reference state
vector.
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Equation 4.9 can be simplified by taking the partial derivatives of Equations 3.34, 3.35, 3.36,

and 4.3 to get:

A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx(t) Uxy(t) Uxz(t) 0 2 0

Uyx(t) Uyy(t) Uyz(t) −2 0 0

Uzx(t) Uzy(t) Uzz(t) 0 0 0


=

 03x3 I3x3

Uij3x3(t) Ω3x3

 , (4.10)

where I3x3 is the Identity Matrix, 03x3 is the Zero Matrix, and Uij3x3(t) contains the double

partial derivatives of the Psuedo Potential function — Equations 3.31, 3.32, and 3.33 —

which are defined as:

Uxx(t) = 1− (1− µ)

∥ r⃗31(t) ∥3
− µ

∥ r⃗32(t) ∥3
+

3(1− µ)(x(t) + µ)2

∥ r⃗31(t) ∥5
+

3µ(x− 1 + µ)2

∥ r⃗32(t) ∥5
(4.11)

Uxy(t) = Uyx(t) =
3y(t)(1− µ)(x(t) + µ)

∥ r⃗31(t) ∥5
+

3µ(x(t)− 1 + µ)y(t)

∥ r⃗32(t) ∥5
(4.12)

Uxz(t) = Uyz(t) =
3z(t)(1− µ)(x(t) + µ)

∥ r⃗31(t) ∥5
+

3µ(x(t)− 1 + µ)z(t)

∥ r⃗32(t) ∥5
(4.13)

Uyy(t) = 1− (1− µ)

∥ r⃗31(t) ∥3
− µ

∥ r⃗32(t) ∥3
+

3(1− µ)y2(t)

∥ r⃗31(t) ∥5
+

3µy2(t)

∥ r⃗32(t) ∥5
(4.14)

Uyz(t) = Uzy(t) =
3(1− µ)y(t)z(t)

∥ r⃗31(t) ∥5
+

3µy(t)z(t)

∥ r⃗32(t) ∥5
(4.15)

Uzz(t) =
(1− µ)

∥ r⃗31(t) ∥3
− µ

∥ r⃗32(t) ∥3
+

3(1− µ)z2(t)

∥ r⃗31(t) ∥5
+

3µz2(t)

∥ r⃗32(t) ∥5
. (4.16)

The variational equations in Equation 4.8 becomes the familiar linear, 1st–order,
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homogeneous system:
˙⃗x(t) = A(t)x⃗(t), x(t0) = x0, (4.17)

where the initial time, t0, and initial state, x0 — the initial conditions — are given.

The solution to Equation 4.17 is the STM:

x(t) = Φ(t, t0)x(t0), (4.18)

where Φ(t, t0) is the STM (see [72] and [3] or any textbook on Linear Systems Theory for a

derivation) is equal to the following 6x6 matrix of partial derivatives:

Φ(t, t0) =



∂x(t)
∂x0(t)

∂x(t)
∂y0(t)

∂x(t)
∂z0(t)

∂x(t)
∂ẋ0(t)

∂x(t)
∂ẏ0(t)

∂x(t)
∂ż0(t)

∂y(t)
∂x0(t)

∂y(t)
∂y0(t)

∂y(t)
∂z0(t)

∂y(t)
∂ẋ0(t)

∂y(t)
∂ẏ0(t)

∂y(t)
∂ż0(t)

∂z(t)
∂x0(t)

∂z(t)
∂y0(t)

∂z(t)
∂z0(t)

∂z(t)
∂ẋ0(t)

∂z(t)
∂ẏ0(t)

∂z(t)
∂ż0(t)

∂ẋ(t)
∂x0(t)

∂ẋ(t)
∂y0(t)

∂ẋ(t)
∂z0(t)

∂ẋ(t)
∂ẋ0(t)

∂ẋ(t)
∂ẏ0(t)

∂ẋ(t)
∂ż0(t)

∂ẏ(t)
∂x0(t)

∂ẏ(t)
∂y0(t)

∂ẏ(t)
∂z0(t)

∂ẏ(t)
∂ẋ0(t)

∂ẏ(t)
∂ẏ0(t)

∂ẏ(t)
∂ż0(t)

∂ż(t)
∂x0(t)

∂ż(t)
∂y0(t)

∂ż(t)
∂z0(t)

∂ż(t)
∂ẋ0(t)

∂ż(t)
∂ẏ0(t)

∂ż(t)
∂ż0(t)


=



ϕ11(t) ϕ12(t) ϕ13(t) ϕ14(t) ϕ15(t) ϕ16(t)

ϕ21(t) ϕ22(t) ϕ23(t) ϕ24(t) ϕ25(t) ϕ26(t)

ϕ31(t) ϕ32(t) ϕ33(t) ϕ34(t) ϕ35(t) ϕ36(t)

ϕ41(t) ϕ42(t) ϕ43(t) ϕ44(t) ϕ45(t) ϕ46(t)

ϕ51(t) ϕ52(t) ϕ53(t) ϕ54(t) ϕ55(t) ϕ56(t)

ϕ61(t) ϕ62(t) ϕ63(t) ϕ64(t) ϕ65(t) ϕ66(t)


.

(4.19)

Equation 4.19 can be compactly expressed as:

Φ(t, t0) =

ϕrr(3x3)(t) ϕrv(3x3)(t)

ϕvr(3x3)(t) ϕvv(3x3)(t)

 . (4.20)

Finally, differentiate Equation 4.18 and plug it into 4.17 to get:

Φ̇(t, t0) = A(t)Φ(t, t0) (4.21)
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where,

Φ̇(t, t0) =



∂ẋ(t)
∂ẋ0(t)

∂ẋ(t)
∂ẏ0(t)

∂ẋ(t)
∂ż0(t)

∂ẋ(t)
∂ẍ0(t)

∂ẋ(t)
∂ÿ0(t)

∂ẋ(t)
∂z̈0(t)

∂ẏ(t)
∂ẋ0(t)

∂ẏ(t)
∂ẏ0(t)

∂ẏ(t)
∂ż0(t)

∂ẏ(t)
∂ẍ0(t)

∂ẏ(t)
∂ÿ0(t)

∂ẏ(t)
∂z̈0(t)

∂ż(t)
∂ẋ0(t)

∂ż(t)
∂ẏ0(t)

∂ż(t)
∂ż0(t)

∂ż(t)
∂ẍ0(t)

∂ż(t)
∂ÿ0(t)

∂ż(t)
∂z̈0(t)

∂ẍ(t)
∂ẋ0(t)

∂ẍ(t)
∂ẏ0(t)

∂ẍ(t)
∂ż0(t)

∂ẍ(t)
∂ẍ0(t)

∂ẍ(t)
∂ÿ0(t)

∂ẍ(t)
∂z̈0(t)

∂ÿ(t)
∂ẋ0(t)

∂ÿ(t)
∂ẏ0(t)

∂ÿ(t)
∂ż0(t)

∂ÿ(t)
∂ẍ0(t)

∂ÿ(t)
∂ÿ0(t)

∂ÿ(t)
∂z̈0(t)

∂z̈(t)
∂ẋ0(t)

∂z̈(t)
∂ẏ0(t)

∂z̈(t)
∂ż0(t)

∂z̈(t)
∂ẍ0(t)

∂z̈(t)
∂ÿ0(t)

∂z̈(t)
∂z̈0(t)


=



ϕ̇11(t) ϕ̇12(t) ϕ̇13(t) ϕ̇14(t) ϕ̇15(t) ϕ̇16(t)

ϕ̇21(t) ϕ̇22(t) ϕ̇23(t) ϕ̇24(t) ϕ̇25(t) ϕ̇26(t)

ϕ̇31(t) ϕ̇32(t) ϕ̇33(t) ϕ̇34(t) ϕ̇35(t) ϕ̇36(t)

ϕ̇41(t) ϕ̇42(t) ϕ̇43(t) ϕ̇44(t) ϕ̇45(t) ϕ̇46(t)

ϕ̇51(t) ϕ̇52(t) ϕ̇53(t) ϕ̇54(t) ϕ̇55(t) ϕ̇56(t)

ϕ̇61(t) ϕ̇62(t) ϕ̇63(t) ϕ̇64(t) ϕ̇65(t) ϕ̇66(t)


.

(4.22)

Equation 4.22 can be compactly expressed as:

Φ̇(t, t0) =

ϕ̇rr(3x3)(t) ϕ̇rv(3x3)(t)

ϕ̇vr(3x3)(t) ϕ̇vv(3x3)(t)

 . (4.23)

Equation 4.21 is numerically integrated with the CR3BP EoM to find a given trajectory.

There are important properties of the STM. Consult [72], [3], or any textbook on Linear

Systems Theory for an exposition of these properties.

4.1.1 The Monodromy Matrix

The reference trajectory of a periodic orbit returns to the initial state, x⃗R0(t) after n

revolutions:

x⃗R0(t+ (n+ 1)T ) = x⃗R0(nT ). (4.24)

The STM for a reference trajectory on a periodic orbit is called the Monodromy Matrix. It

is defined as:

M ≡ Φ(T, 0) =
∂Φ(T, x⃗R0(t))

∂x⃗R0(t)
. (4.25)
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The Monodromy Matrix is a discrete time system and provides information about the

eigenstructure of the orbit. Specifically, it computes the sensitivities along the periodic orbit

from the initial condition, x⃗R0(t), and it contains information about the hyperbolic invariant

stable and unstable manifold directions on the periodic orbit, if there are any. Henceforth,

all manifolds are assumed to be hyperbolic and invariant. Some important properties of M

are:

• It is a linear mapping;

• M is symplectic; and

• Orbit stability depends on the trace of M [15].

The eigenvalues of M are called the characteristic or Floquet multipliers of the

periodic solution [57], and the multipliers quantify the degree of expansion, contraction, or

rotation applied to solutions after each period [58]. Since the CR3BP is a Hamiltonian system

and is symplectic, M has at least two eigenvalues equal to +1 and at least two eigenvalues in

a reciprocal pair [57]. The eigenvalues equal to unity are associated with a mode that follows

the periodic orbit, and the reciprocal pair are a mode that follows the family of periodic

orbits [43]. The other nontrivial pair of eigenvalues describe orbital stability. Because M is

a 6x6 matrix, it will have a total of six eigenvalues and six eigenvectors. If the reciprocal

pair of eigenvalues are a pair of real numbers, then the last pair of eigenvalues are a pair of

complex numbers. The following rules define periodic orbit stability:

• If |λ| < 1, then the eigenvalue is associated with a stable periodic orbit, has a stable

subspace, and has no stable or unstable manifolds.

• If |λ| > 1, then the eigenvalue is associated with an unstable periodic orbit, has a

stable and unstable subspace, and has stable and unstable manifolds.
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The associated eigenvectors, when |λ| > 1, are tangent to the local stable and unstable

manifolds on the periodic orbit and are used to locate the global stable and unstable

manifolds.

To find the eigenvalues of M, one must find the trace of M or solve the characteristic

equation:

tr(M) = λ1 + λ2 + λ3 + λ4 or det([M]− λ [I2n]) = 0, (4.26)

where [I] is the Identity Matrix. Using the derivation from [38], Equation 4.26 reduces to:

det([M]− λ [I2n]) = λ2np
1

λ
, (4.27)

where the eigenvalue rules follow immediately from visual inspection.

4.2 Differential Corrections

Most differential equations, the partial or ordinary variants, are nonlinear and unsolvable

in an analytic closed form solution, as is the case with the CR3BP EoM. Therefore, computational

numerical methods are used to approximate solutions to these equations. Any given differential

equation describes a trajectory in the phase space, where the trajectory has initial and final

values. If the problem prescribes values, like initial position and initial velocity at an initial

time, t0, then the problem is called an initial value problem (IVP). If the problem prescribes

values, like the initial position and final position at an initial time, t0, and a final time, tf ,

then the problem is called a boundary value problem (BVP). A BVP can be composed of any

combination of values at the endpoints of a given trajectory in the phase space. BVPs do not

have a “direction” of numerical integration on a given interval; the trajectory is computed

everywhere all at once, because there is no single time step where the state vector is complete
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[45]. In the case of computing trajectories, orbits, or manifolds in the CR3BP, a solution to

a two–point boundary value problem (2PBVP) is needed.

4.2.1 Multi–Dimensional Newton–Raphson Method

A generic algorithm to use for a 2PBVP is a multi–dimensional Newton–Raphson

algorithm, which approximates a function, f , near some function value iteration, xk(t), at

the intersection of a tangent line and f(xk(t)). Using this technique has numerous advantages

which include simplicity, broad applicability, and a fast, quadratic convergence rate when

initial guesses are within a close neighborhood of the actual solution. One disadvantage

is that the Jacobian must be invertible, i.e. nonsingular. In the multi–dimensional case,

convergence cannot happen if the Jacobian is not invertible. Even if it is nonsingular or

invertible, it can be computationally expensive, depending upon the structure of the Jacobian

[45]. However, even the scenario with arbitrarily bad initial guesses, convergence will still

occur globally for convex and concave f [14].

First, define the design or free (also called control) variable vector of n elements,

which is generally the state vector and perhaps other quantities or parameters:

x⃗(t) =


x1(t)

...

xn(t)

 . (4.28)

Similar to the scalar Newton–Raphson Method where one seeks to find a root of the equation,

the multi–dimensional case imposes a constraint vector composed of m constraints, which

enforces the requirement that the system of nonlinear equations equal zero or is within some
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acceptable tolerance threshold:

F⃗ (x⃗(t)) =


F1(x⃗(t))

...

Fm(x⃗(t))

 = 0⃗. (4.29)

This tolerance threshold can be computed via applying the 2–norm to the constraint vector,

and ensuring that it is less than some epsilon:

∥ F⃗ (x⃗(t)) ∥2≤ ϵ. (4.30)

Next, the constraint vector is expanded around an initial guess, x⃗0(t), of the design variable

vector to find the solution, x⃗∗(t), of the nonlinear equations. Using the Taylor Series

Expansion, to get:

F⃗ (x⃗∗(t)) ≈ F⃗ (x⃗0(t)) + [Jf (x⃗0(t))]mxn (x⃗k(t)− x⃗0(t)) +HOT, (4.31)

where x⃗k(t) is the next guess, and the Jacobian Matrix is a mxn matrix defined as:

[Jf (x⃗0(t))]mxn =

[
∂F⃗ (x⃗0)i(t)

∂x⃗j(t)

]
mxn

=


∂F1(t)
∂x1(t)

. . . ∂F1(t)
∂xn(t)

... . . . ...
∂Fm(t)
∂x1(t)

. . . ∂Fm(t)
∂xn(t)

 . (4.32)

The higher order terms (HOT) are negligible and are dropped. Because the constraint vector

equals zero, Equation 4.31 becomes:

F⃗ (x⃗k(t)) + [Jf (x⃗k(t))]mxn (x⃗k+1(t)− x⃗k(t)) = 0, (4.33)
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where x⃗k(t) is the current iteration, and x⃗k+1(t) is the next iteration.

Using the multi–dimensional Newton–Raphson form, one must pay attention to the

number of design variables, n, and how many constraint equations, m, that there are. If

n = m, where the number of different design variables equals the number of constraint

equations, then there is a solution. This is trivially called a determined system. If n > m,

where there are more design variables than constraint equations, then the Jacobian Matrix is

non–square and there is an infinite number of solutions. This is called an underdetermined

system. In this situation, one must use other methods to solve such a system. One such

method is using the minimum norm, which finds a solution closest to the initial guess, x⃗0(t).

If m > n, where there are more constraint equations than design variables, then the system

is called overdetermined, and there are no solutions to this system.

To summarize, the procedure for implementing a multi–dimensional Newton–Raphson

algorithm is the following:

• First, define the design variable vector x⃗(t), the constraint variable vector F⃗ (x⃗(t)), and

choose the initial guess x⃗0(t),

• Second, set the first iteration equal to initial guess, x⃗k(t) = x⃗0(t),

• Next, compute [Jf (x⃗k(t))] at current iteration,

• Solve x⃗k+1(t) = x⃗k(t) +
F⃗ (x⃗k(t))

[Jf (x⃗k(t))]
−1 ,

• Update guess x⃗k+1(t) = x⃗k(t) + ∆x⃗k(t), where ∆x⃗k(t) = (x⃗k+1(t)− x⃗k(t)), and

• Finally, if ∥ F⃗ (x⃗k+1(t)) ∥2≤ ϵ is not true, then proceed to next the iteration. If it is

true, then x⃗k+1(t) = x⃗∗(t), i.e. current iteration equals the solution with the prescribed

tolerance, ϵ.
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4.2.2 Single Shooting Method

A simple algorithmic implementation of a multi–dimensional Newton–Raphson Method

to find a solution to a 2PBVP is called the SSM. The SSM reframes the BVP as an IVP

that iteratively finds desired end states — it “shoots” single shots, or single integrated

trajectories, until it hits the target or “root” that solves the system of equations. The SSM,

and shooting methods in general, are advantageous because IVPs are usually computationally

less expensive; however, there are a couple disadvantageous. First, the SSM is still subject

to stability properties of the EoM, which may make it difficult or impossible for a solution

to converge [45]. And second, there may be existence and uniqueness issues with the

EoM over the chosen interval of integration, which would affect computed solutions [45].

Fortunately, the CR3BP EoM are well–conditioned enough to find converged solutions. The

second disadvantage can arise from assumptions inherent to Newtonian Gravity, that is,

the gravitational force between two point masses approaches infinity when the distance

between the masses approaches zero, which is called a singularity (i.e. no solution exists at

these conditions). But, this singularity can be eliminated through a variable transformation

technique called Regularization. See [80] or [77] for a treatment of this method. This thesis

does not consider scenarios that would require regularized EoM.

The SSM is framed in the following way from [64]:

Definition 4.1. Suppose that the initial conditions for a spaceship in the phase space is

denoted by a four dimensional state vector and a two dimensional state vector in physical

space, x⃗0(t). It has an initial velocity and arrives at its final state designated as x⃗f (t) at

t = t0 + T . It needs to execute a maneuver such that it arrives at a different desired state

designated x⃗d(t).

The initial position, x0(t) and y0(t), of the spaceship is fixed and only the velocities,
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ẋ0(t) and ẏ0(t), and period, T, constitute the design variable vector. It constitutes one

boundary of the SSM. The SSM is designed such that it “shoots” perpendicular to the

x̂–axis, and each shot is within a neighborhood of a collinear Lagrange point. The design

variable vector is defined as:

x⃗(t) =


ẋ0(t)

ẏ0(t)

T

 . (4.34)

The second boundary of the SSM is the constraint vector, which is composed of the spaceship’s

final position, xf (T ) and yf (T ), and the desired final position of the spaceship, xd(T ) and

yd(T ). The final position and desired final position must equal each other to find the

integrated trajectories for the spaceship. This is the imposed constraint. One way to write

this mathematically is to make the constraint vector equal to zero:

F⃗ (x⃗(t)) =

xf (T )− xd(T )

yf (T )− yd(T )

 = 0⃗. (4.35)

The constraint vector is always equal to zero and its the design variables that change. The

SSM is, therefore, deftly recast into an IVP from a 2PBVP.

The Jacobian Matrix is a 2x3 made up of partial derivatives of the constraint variable

vector with respect to the design variable vector, as was demonstrated in Section 4.2.1. Since

n > m, there are infinite solutions or infinite periodic orbits. This is not a problem in the

CR3BP, because there are infinite periodic solutions by definition, as stated previously. The

Jacobian is defined as:

[
∂F⃗ (x⃗0(t))i
∂x⃗j(t)

]
mxn

=

∂x⃗f (T )

∂ ˙⃗x0(t)

∂x⃗f (T )

∂ ˙⃗y0(t)

∂x⃗f (T )

∂T

∂y⃗f (T )

∂ ˙⃗x0(t)

∂y⃗f (T )

∂ ˙⃗y0(t)

∂y⃗f (T )

∂T

 =

Φ21(T ) Φ25(T ) ẏf (T )

Φ41(T ) Φ45(T ) ẋf (T )

 . (4.36)
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It consists of a 2x2 submatrix of STM elements and a 3x1 vector of time derivatives. To

reiterate, because a Newton–Raphson solver is used to execute the SSM, the Jacobian Matrix

must be invertible. Because the Jacobian is not a square matrix, one must check to ensure

that its determinant is not zero or if the matrix is full column rank. Figure 4.2 demonstrates

single shooting iterations converging to solutions.

The justification to reflect the L3 Lyapunov Orbits across the x̂–axis comes from [71]:

Theorem 4.2. The Mirror Theorem: If n–point masses are acted upon by their mutual

gravitational forces only, and at a certain epoch each radius vector from the stationary center

of mass of the system is perpendicular to every velocity vector, then the orbit of each point

mass after that epoch is a mirror image of its orbit prior to that epoch.

4.2.3 Continuation Methods

It is generally useful to plot an entire periodic orbit family. Like other DST techniques,

seeking qualitative information is important. This is achieved by viewing the orbit family

structure. Computationally, a continuation method is used to construct a periodic orbit

family based of the reference periodic orbits created from the SSM differential corrections

algorithm. Here we will use NPC.

First, one must find a converged solution for a periodic orbit, using the numerical

methods described above. The initial conditions for the converged periodic orbits are x⃗1
0 and

x⃗2
0. Define:

∆(t) = x⃗2
0(t)− x⃗1

0(t) =



∆x0(t)

0

0

∆vy0(t)


. (4.37)
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Figure 4.2: Single Shooting Method to obtain L3 Lyapunov orbits (Plotted to Scale). Here
are two small amplitude L3 Lyapunov orbits. The design variable vector elements, ẋ0(t) and
ẏ0(t), are shown. (xf (T ), yf (T )) are the final conditions after each iteration. (xd(T ), yd(T ))
are the desired conditions for convergence. A 2nd x̂–axis crossing is found for each orbit after
nine iterations. For each orbit, the constraint variable vector approaches zero after iteration
three, when convergence upon a solution occurs. After a converged solution is found, it is
simply reflected over the axis of symmetry (the x–axis or line of syzygy) to plot a whole L3
Lyapunov orbit.
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Second, a parameter is varied and used as a new guess to produce a second converged

solution:

x⃗3
0,g(t) = x⃗2

0(t) + ∆(t) =



x3
0(t)

0

0

v3y0(t)


. (4.38)

Finally, this procedure is repeated until the desired periodic orbit family is produced.

4.3 Invariant Manifold Theory

In its most general definition, a manifold is an abstract, finite, and locally flat

n–dimensional mathematical object, where n is any positive integer [65], i.e. n ≥ 0. If

it is embedded in Rn, then it is m–dimensional, where m ≥ 0. Put another way, manifolds

are abstractions of smooth surfaces that are subject to the structure and properties of

vector spaces [1] and are “a linear vector subspace of Rn” [86]. Manifolds have many useful

applications in many disciplines, most prominently in DST and astrodynamics. Here this

notion of a manifold is applied to topologically describe the set of all possible trajectories a

spaceship may travel under specific initial conditions and EoM.

Specifically, invariant manifolds (e.g., equilibrium points, periodic orbits, quasiperiodic

orbits, or almost periodic orbits) have the property that trajectories starting in the invariant

manifold remain in the invariant manifold for all forward in time, t ≥ 0, and backward in

time, t < 0. The dynamicist Stephen Wiggins cogently described it:

Roughly speaking, an invariant manifold is a surface contained in the phase space

of a dynamical system that has the property that orbits starting on the surface

remain on the surface throughout the course of their dynamical evolution in one
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or both directions of time; i.e. an invariant manifold is a collection of orbits

which form a surface. [85].

In this section, IMT is leveraged to construct the orbit structure in the vicinity of fixed points

and periodic orbits via stable, unstable, and center linear vector subspaces, i.e. manifolds.

These will enable the construction of an orbit architecture for asteroid mining.

4.3.1 Computing Hyperbolic Invariant Stable and Unstable Manifolds

First, the eigenvectors from M are used to find the local stable and unstable directions.

As stated above, the eigenvector associated with |λ1| > 1 is the unstable direction, and the

eigenvector associated with |λ2| < 1 is the stable direction. Next, the eigenvectors are

normalized and an epsilon, ϵ, is chosen as a small displacement from X⃗0 in the direction of

one of the eigenvectors. Finally, the the local linear approximation, X⃗0 of the stable and

unstable manifolds are computed to produce the global stable and unstable manifolds, which

is called globalization of manifolds [38] (See Figures 4.3 and 4.4).

Define Y⃗ s(X⃗0) as the normalized stable eigenvector, and Y⃗ u(X⃗0) as the normalized

unstable eigenvector. ϵ is applied to each of these directions, which is large enough to

overcome the asymptotic nature of the manifold but small enough to preserve the linear

character of the estimation [38]:

X⃗s(X⃗0) = X⃗0 + ϵY⃗ s(X⃗0) (4.39)

X⃗u(X⃗0) = X⃗0 + ϵY⃗ u(X⃗0), (4.40)

where X⃗0 is the initial guess for each respective manifold. The stable manifold is integrated

backward in time, and the unstable manifold is integrated forward in time. In order to find
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Figure 4.3: Local Stable and Unstable Eigenvector and Manifold Directions (Not Drawn
to Scale). X⃗0 is the initial guess for the manifolds which is on a periodic orbit. Y u(X⃗0)

represents the unstable eigenvector direction evaluated at the initial guess, and Y s(X⃗0)

represents the stable eigenvector direction evaluated at the initial guess. W u±
loc (X⃗0) is the local

unstable manifold evaluated at the initial guess, and W s±
loc (X⃗0) is the local stable manifold

evaluated at the initial guess.
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Figure 4.4: Figure 4.3 zoomed-in (Figure Not Drawn to Scale). The local manifolds are
computed by displacing X⃗0 by ϵ and numerically integrating backwards in time and displacing
by −ϵ and numerically integrating forwards in time.

a manifold at t, one simply propagates with the STM:

Y s(X⃗(t)) = Φ(0, t)Y s(X⃗0). (4.41)

Finally, Y s(X⃗(t)) must be renormalized since the STM does not preserve the norm. See

Figure 4.5 for a plot of the stable and unstable global manifolds for a given periodic orbit.

4.4 Lagrange Point Stability

It is important to know, if a spaceship starts at one of the Lagrange Points will it

stay there? If it does not stay in the vicinity of one of them, is its departure gradual or

sudden? This is a question about the dynamical stability of each equilibrium point. In this

paper, stability always refers to the Lyapunov sense of stability. Understanding the stability

of each point is important for many practical applications. The previous analysis of the
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Figure 4.5: L3 Lyapunov Orbit with Stable and Unstable Manifolds (Drawn to Scale). The
Earth-Moon rotating frame is plotted with all collinear Lagrange Points. The red manifolds
are the unstable manifolds and the green manifolds are the stable manifolds. A spaceship on
one of the 50 red manifolds will asymptotically approach the L3 Lyapunov orbit as t → −∞.
A spaceship on one of the 50 green manifolds will asymptotically approach the L3 Lyapunov
orbit as t → +∞.
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Effective and Psuedo Potential already hinted at the stability of each Lagrange Point. L1,

L2, and L3 are saddle points, which are unstable by definition. L4 and L5 can be stable or

unstable depending upon the value of µ. In other words, the Pseudo Potential must satisfy

the following condition:
∂U(t)

∂x(t)

∣∣∣∣
0

=
∂U(t)

∂y(t)

∣∣∣∣
0

=
∂U(t)

∂z(t)

∣∣∣∣
0

= 0. (4.42)

In order to study the stability of each point, one must linearize the EoM around each

equilibrium point. Then, find the eigenvalues of each respective set of linearized EoM.

The first step in the linearizing process is to displace the state vector of the equilibrium

point and take its time derivative:

x⃗(t) = x⃗0(t) + δx⃗(t) and ˙⃗x(t) = ˙⃗x0(t) + δ ˙⃗x(t), (4.43)

where x⃗0(t) is the state vector at the Lagrange Point, δx⃗(t) is a small displacement in the

neighborhood of x⃗0(t), and x⃗(t) is the actual state vector. Next, a Taylor Series Expansion

is applied to Equation 4.43. The process is the same as the derivation of the STM. After the

expansion we get the same Variational Equations, Equation 4.8:

δ ˙⃗x(t) ≈ ∂f⃗(t)

∂x⃗(t)

∣∣∣
x⃗0(t)

δx⃗(t) = A(t)δx⃗(t). (4.44)

Since Lagrange Points are maxima in the z–direction, all double partial derivatives

of the potential with a z–component are equal to zero, that is:

Uxz(t) = Uzx(t) = Uyz(t) = Uzy(t) = Uzz(t) = 0. (4.45)
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This reduces the Jacobian of Equation 4.8 to:

A(t) =



0 0 1 0

0 0 0 1

Uxx(t) Uxy(t) 0 2

Uyx(t) Uyy(t) −2 0


. (4.46)

Next, the characteristic equation is defined to find the eigenvalues of the Jacobian:

det(A(t)− λI) = 0 (4.47)

det



−λ 0 1 0

0 −λ 0 1

Uxx(t) Uxy(t) −λ 2

Uyx(t) Uyy(t) −2 −λ


= 0. (4.48)

This reduces to the following polynomial:

λ4 + (4− Uxx(t)− Uyy(t))λ
2 + Uxx(t)Uyy(t)− U2

xy(t) = 0. (4.49)

Now, define Λ = λ2 and β1 = −(Uxx(t)+Uyy(t)

2
− 2) and β2

2 = −Uxx(t)Uyy(t) + U2
xy(t) and

Equation 4.49 reduces to:

Λ2 + 2β1Λ− β2
2 = 0. (4.50)

The solution of Equation 4.50 using the Quadratic Equation is:

Λ1,2 = −β1 ±
√
β2
1 + β2

2 . (4.51)

The four roots of the polynomial and the eigenvalues of the Jacobian evaluated at a collinear
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Lagrange Point are:

λ1,2 = ±
√

|Λ1| = ±
√

|−β1 ±
√
β2
1 + β2

2 | (4.52)

λ3,4 = ±i
√

|Λ2| =
√

|−β1 ±
√

β2
1 + β2

2 |. (4.53)

λ1,2, two real roots, and λ3,4, two imaginary roots, are the eigenvalues of the collinear

Lagrange Points for in–plane motion. As Equation 4.46 makes explicit, motion in the x− y

plane is completely decoupled from out of plane motion in either z–direction.

For a time invariant Jacobian, the stability properties are:

• If all the eigenvalues of A(t) are strictly in the left half complex plane, Re(λ) < 0

where ±
√
|−β1 ±

√
β2
1 + β2

2 | < 0, then the equilibrium point is stable.

• If at least one eigenvalue of A(t) is strictly in the right half complex plane, Re(λ) > 0

where ±
√

|−β1 ±
√

β2
1 + β2

2 | > 0, then the equilibrium point is unstable.

• If all of the eigenvalues of A(t) are in the left half complex plane, but at least one is

on the imaginary axis, then a conclusion about stability is at least marginally stable

[53, 75]. How “marginal” the stability is depends on the size of the mass parameter, µ,

of the CR3BP system. Indeed, this stability is a function of µ.

When the eigenvalues are computed, one will find the following:

• L1 has one Re(λ) < 0, one Re(λ) > 0, and two on the imaginary axis. This makes L1

unstable.

• L2 has two Re(λ) < 0 and two Re(λ) > 0. This makes L2 unstable.

• L3 has one Re(λ) < 0, one Re(λ) > 0, and two on the imaginary axis. This makes L3

unstable.
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• L4 and L5 each have four on the imaginary axis. This makes L4 and L5 marginally

stable.

There is also variation of stability based on axis of departure. Recall that the collinear

equilibriums are saddle points as seen in Figure 3.7. See [74] for a discussion on departure

axes.

4.5 The Stability Index

Recall that the stability of Lagrange Points was computed via a linearization process.

By definition of the linearizing process, the stability results are only valid within a small

neighborhood of each respective equilibrium point. As orbit families are computed that

have orbits far away from the point of linearization, then nonlinear effects can no longer be

ignored. As a result, the stability or instability of orbits in the same family will vary. This

is the case with the periodic orbits computed in this thesis. As the amplitude of the L3

Lyapunov orbits increase away from the L3 point, the periodic orbits become stable. They

get closer and closer to Earth in the inertial frame of reference. So, the gravity of Earth

increasingly dominates the EoM versus the gravity of the Moon, thus creating large stable

orbits.

The Stability Index measures the stability of periodic orbits and is computed directly

from M by finding its eigenvalues. See Subsection 4.1.1 on the Monodromy Matrix and

finding its eigenvalues. The Stability Index is defined as:

ν =
1

2
(λmax +

1

λmax

), (4.54)

where λmax = Re(λmax), i.e. the eigenvalue that is the absolute value maximum real number.
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A periodic orbit is defined as stable if ν ≤ 1, and as unstable if ν > 1. See Figure 5.13 for

a stability index plot of the L3 Lyapunov orbit family. The Stability Index can also be used

to find other families of orbits. An index of one for multiple adjacent orbit family members

could signal the presence of nearby higher dimensional orbits. Figure 5.11 and 5.12 are plots

of L1 and L2 Lyapunov orbit families for comparison.



Chapter 5

An Asteroid Mining Orbit

Architecture in the Earth–Moon

System

Now that all the necessary theoretical and mathematical tools and notational machinery

is developed, attention may turn back to the original problem posed by this thesis: what is an

advantageous orbit architecture for asteroid mining in the EMS, which can be leveraged for

space resource transport using Lagrange Point orbits? First, the phase space of L3 Lyapunov

orbits is analyzed to determine which trajectories optimize access to the economic centers of

gravity in cislunar space, i.e. the Earth and Moon. Second, orbital period, Jacobi Constant,

and stability index are identified as metrics to determine processing and refining orbits.

Third, how the hyperbolic invariant stable and unstable manifolds of the Lyapunov orbits

can be leveraged to connect orbit architectures is discussed. Finally, a ∆V is determined to

find optimal transfers from manifolds to GEO and vice versa. Throughout these discussions,

L3 Lyapunov orbits will be compared to L1 and L2 Lyapunov orbits in the EMS.

87
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5.1 The Phase Space of L3 Lyapunov Orbits

The phase space of the CR3BP is defined by computing all the possible locations of

m3 given by the coordinates (x, y, ẋ, ẏ), which makes it 4D. The kinematic conditions of the

CR3BP impose constraints on the motions of the primaries to the x− y plane. However, the

motion of m3 is not constrained to the x − y plane. In this section, the coordinates of the

phase space will be used to describe some unique geometric characteristics inherent in L3

Lyapunov orbits.

As previously mentioned, there are infinite periodic solutions (orbits) in the CR3BP.

In Figure 5.1, only fourteen Lyapunov orbits are plotted. This does not mean that there

are only fourteen around L3. The numerical algorithm was designed to only compute and

plot fourteen orbits. However, the infinite Lyapunov orbits do form the same structure

shown. When discussing the size of any Lyapunov orbit, it is defined in terms of its x and y

amplitudes. The amplitude is a measure of height, Ay, or width, Ax, of each orbit. The first

two orbits almost look Keplerian, circular, or elliptical. But, they quickly flatten and begin

to form the familiar kidney bean shape. The amplitudes are limited by the physical presence

of m1, Earth in this case. If more orbits were plotted, the close approach of those orbits

would collide with Earth. Those orbits are transformed into an inertial frame of reference

and are plotted in Figure 5.2. The trajectory of the largest orbit, nFam = 14, passes near

GEO orbit when at perigee with m1, at an altitude of approximately 36,061 km. The second

largest trajectory, nFam = 13, passes just outside of GEO into xGEO at a perigee of 60, 981

km away from m1. These two trajectories were simulated in the Ansys Systems Tool Kit

(STK) and can be visualized in Figure 5.3.

Another way to study the phase space of L3 Lyapunov orbits is to plot a velocity

graph as shown in Figure 5.4. A velocity graph is simply a plot of the velocities instead of
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Figure 5.1: A plot of a family of fourteen L3 Lyapunov orbits in the rotating frame of
reference (Plotted to Scale). To provide a sense of scale in the rotating frame, L3 is 387,645
km away from Earth, and the Moon is about 384,400 km away from Earth on the opposite
side of L3. nFam = 1 is the smallest orbit around L3, and nFam = 14 is the largest orbit
that approaches Earth. Ax is the width of an orbit, and Ay is the height of an orbit.
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Figure 5.2: A plot of transformed orbits from Figure 5.1 to an inertial frame of reference
(Plotted to Scale). An approximated orbit of the Moon is plotted in magenta for comparison.
To provide a sense of scale, the plot is dimensionalized. It is significant to note that
periodicity is not an absolute property of the the CR3BP system. This is why one period
in the rotating frame of reference does not equal one orbit in an inertial frame of reference.
One can see that the integrated orbits have a discontinuity between the first state vector
and the last state vector. nFam = 1 is the least eccentric orbit near the Moon’s orbit, and
nFam = 14 is the most eccentric orbit with a perigee near Earth.
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Figure 5.3: A STK simulation of nFam = 13 and 14 L3 Lyapunov orbits, which are rotated
into an inertial frame of reference. The red orbit is nFam = 14 and and the yellow orbit is
nFam = 13. The grid emanating from Earth is the ecliptic plane and along the background
is the celestial grid for visual orientation. The green circular orbit around Earth is a generic
GEO orbit. The other dots constitute the GPS constellation for comparison. At perigee for
nFam = 14, the orbit is inside of GEO, and, at nFam = 13, the orbit is just outside of GEO
and in xGEO.
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the positions in the rotating frame of reference. A trajectory begins on the top at ẋ = 0

and ẏ > 0, and the motion is clockwise until ẋ = 0 and ẏ < 0. For nFam = 1 − 4, the

motion is always clockwise. However, at nFam > 4, the motion at ẋ = 0 and ẏ < 0 reverses

and becomes counterclockwise, as demonstrated by the crossed trajectories. This reversal

of motion in the velocity phase space occurs due to the kidney bean lobe formation in the

orbit structure of the x–y phase space. Finally, for nFam > 4, the motion returns to ẋ = 0

and ẏ < 0 and reverses direction again back to the clockwise direction, where a period is

completed at ẋ = 0 and ẏ > 0. Viewing this plot of the velocities is helpful to conduct

mission planning for several reasons:

1. While a conventional Lyapunov orbit position plot shows where the orbit is, the

Lyapunov velocity plot shows what the velocity is and how ẋ and ẏ vary. The clockwise

sections of the trajectories is motion near apogee, where the velocity is slowest, and the

counterclockwise sections of the trajectories is motion near perigee, where the velocity

is the fastest.

2. The locations of zero velocity are easy to identify, which is important for applications

like stationkeeping. Small amplitude orbits have the least, as low as four locations of

zero velocity. Large amplitude orbits have the most, as high as six.

Figure 5.5 translates the locations of ẋ and ẏ = 0 onto a x− y position plot.
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Figure 5.4: A non–dimensional ẏ vs. ẋ plot or velocity plot of a family of fourteen L3
Lyapunov orbits in the rotating frame of reference (Plotted to Scale). n = 1 is the smallest
trajectory of velocities that is associated with nFam = 1. n = 14 is the largest trajectory
of velocities that is associated with nFam = 14. As the kidney bean lobe develops, the
“northern”, characterized by clockwise motion, velocity plot forms a pointed end which
eventually splits and forms a “southern”, characterized by counterclockwise motion, velocity
plot.
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Figure 5.5: A plot of a family of fourteen L3 Lyapunov orbits in the rotating frame of
reference (Plotted to Scale). The locations of zero velocity, i.e. when ẋ and ẏ = 0, are
marked by magenta stars and red plus signs, respectively.



5.2. METRICS: PERIOD, JACOBI CONSTANT, AND STABILITY INDEX 95

5.2 Metrics: Period, Jacobi Constant, and Stability

Index

The three metrics used to determine ideal orbits for an asteroid mining orbit architecture

are period, Jacobi Constant, and stability index. The period is an important metric because

it will determine how often the asteroid resources will be available for applications for lunar or

geocentric space infrastructure. The Jacobi Constant is an important metric because it will

determine how much energy or propellant will be required to get to the specified trajectory

or what the required ∆V would be to transfer to a trajectory of a different Jacobi Constant.

Finally, the stability index is the most important metric. A stable orbit is advantageous

because it would require almost nil stationkeeping maneuvers. However, unstable periodic

orbits have associated manifolds which enable free energy transfers throughout cislunar space.

Stable periodic orbits do not have associated manifolds, which is a disadvantage.

The period of an orbit is an important metric for an asteroid mining orbit architecture

for two reasons:

1. Accessibility: In general, a longer orbit in the rotating frame of reference has close

approaches with the Earth compared to shorter period orbits in the rotating frame

of reference. Short period L3 Lyapunov orbits provide nearly continuous access to

the lunar economy. Whereas long period L3 Lyapunov orbits provide access to the

geocentric and lunar economies. See Figure 5.1 and 5.2.

2. Predictability: One of the main problems of collision avoidance with objects in orbit

around Earth is certainty about their state vectors. There is always some uncertainty

which depends on several factors, notably how often radars get a fix on their ephemerides.

Therefore, shorter periods of L3 Lyapunov orbits in the rotating frame of reference
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make it challenging to track the state vectors of asteroids accurately over time. Shorter

periods have an orbital path similar to the Moon, whereas longer period orbits have

close approaches to the Earth. These close approaches make is much easier to obtain

fixes on their state vector.

Maximizing space resource profit would be ensured through maintaining access to the

geocentric and lunar economies. There may be circumstances where some space resources are

slatted for either the geocentric or lunar economy, but by choosing an orbit that provides

access to both will reduce potential future expenses. No matter the phase of the mining

cycle, any company would demand that their space resources have acceptable levels of

uncertainty in their state vectors. Given the current state and locations of space situational

awareness (SSA) assets, orbits that come near GEO, and therefore fixes of their state

can be accomplished, best satisfy the predictability requirement. Therefore, based on the

accessibility and predictability requirements, L3 Lyapunov orbits with longer periods are

more favorable to an asteroid mining industry. As a comparison, Figure 5.6 and 5.7 are

plots of L1 and L2 Lyapunov orbits, respectively. As one can see, both orbit families stay

in the vicinity of the Moon and do not have close approaches with Earth. This could make

them useful for lunar infrastructure, but they lack the flexibility of L3 Lyapunov orbits.

The next metric is the Jacobi Constant. As stated previously, the Jacobi Constant

does not represent the energy of the system in the same sense as the 2B energy. However,

it still can be used to determine how much energy is required to transfer from trajectory

to trajectory. Figures 5.8, 5.9, and 5.10 plot L1, L2, and L3 Lyapunov orbit families,

respectively, each colored by Jacobi Constant. As one expects, the highest Jacobi energy

(least energetic) ranges are required to maneuver from orbit to orbit in the L1, C = 2.7−3.2,

and L2, C = 2.9 − 3.2, Lyapunov families. Low energy trajectories between the families

is also possible. In contrast, the L3 Lyapunov family has a much larger range of Jacobi
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(a) L1 Lyapunov Orbit Family, Rotating Frame, nFam = 25

(b) L1 Lyapunov Orbit Family, Inertial Frame, nFam = 25

Figure 5.6: L1 Lyapunov Orbits (Plotted to Scale). (a) nFam = 1 is the smallest orbit,
and nFam = 25 is the largest orbit. In contrast to L3 Lyapunov orbits, the L1 variant
have a smaller Ax due to the smaller mass of the Moon versus the Earth. (b) is a plot of
transformed orbits to an inertial frame of reference. An approximated orbit of the Moon
is plotted in magenta for comparison. The plot is dimensionalized. Like before, note the
orbital discontinuities.
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(a) L2 Lyapunov Orbit Family, Rotating Frame, nFam = 25

(b) L2 Lyapunov Orbit Family, Inertial Frame, nFam = 25

Figure 5.7: L2 Lyapunov Orbits (Plotted to Scale). (a) nFam = 1 is the smallest orbit, and
nFam = 25 is the largest orbit. Compared to L1 and L3 Lyapunov orbits, the L2 variant
has an Ax which is not as large as L3 but larger than L1. (b) is a plot of transformed orbits
to an inertial frame of reference. An approximated orbit of the Moon is plotted in magenta
for comparison. The plot is dimensionalized. Like before, note the orbital discontinuities.
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Figure 5.8: L1 Lyapunov Orbit Family, nFam = 33 (Plotted to Scale). The orbits have a
color gradient from red, most energetic, to blue, least energetic. Luna is the Moon. Image
was constructed from Ansys STK CODE software.
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Figure 5.9: L2 Lyapunov Orbit Family, nFam = 26 (Plotted to Scale). The orbits have a
color gradient from blue, most energetic, to green, least energetic. Luna is the Moon. Image
was constructed from Ansys STK CODE software.
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Figure 5.10: L3 Lyapunov Orbit Family, nFam = 14 (Plotted to Scale). The orbits have
a color gradient from purple, most energetic, to green, least energetic. Luna is the Moon.
Image was constructed from Ansys STK CODE software.
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Constant, from C = 1.79 − 3.0. The least energetic (highest Jacobi Constant) orbit of the

family is onpar with the L1 and L2 families. However, its most energetic (lowest Jacobi

Constant) orbit requires much more energy than L1 or L2, which is expected.

The implications for an asteroid mining architecture are the following:

1. It is energetically cheaper to have asteroid space resources in a L1 or L2 Lyapunov

orbit. It is cheaper to transport them there, and it is cheaper to maneuver between

orbits, if required.

2. It is energetically expensive to transport asteroid space resources to L3 Lyapunov orbits

that meet the accessibility and predictability period requirements.

3. It is energetically expensive to transport asteroid space resources in between orbits in

the L3 Lyapunov orbit family.

The Jacobi Constant is an important metric to determine an asteroid mining orbit architecture,

but it certainly does not have the last word.

The final metric is the stability index defined in section 4.5. Periodic orbits around

Lagrange Points in the EMS tend to be unstable. However, the linearization method to

determine stability is only valid in a “neighborhood” of the linearization. Therefore, as one

departs this neighborhood, nonlinearies begin to affect the solution — possibly making it

stable. Figures 5.11, 5.12, and 5.13 plot the stability index, ν, and period, T, versus Jacobi

Constant, C, for L1, L2, and L3 Lyapunov orbit families, respectively. L1 Lyapunov orbits

are highly unstable. L2 Lyapunov Orbits are less unstable, but unstable nevertheless. L3

Lyapunov orbits are the least unstable, and one orbit computed in this thesis is stable. The

highest stability index for L1 is ν = 1, 321 and for L2 is ν = 724. The lowest stability index

for L1 is ν = 574 and for L2 is ν = 90. In comparison, the highest stability index for L3 is
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Figure 5.11: Stability Index, ν, and Period, T, vs. Jacobi Constant, C, for nFam = 50 L1
Lyapunov Orbits. Red is associated with the stability index, and blue is associated with the
period. As the Jacobi Constant increases, the period of the orbit gets smaller, and the orbit
becomes highly unstable.

ν = 1.67 and the lowest is ν = 1.0.

The implications for an asteroid mining architecture are the following:

1. Due to the highly unstable environment of L1 Lyapunov orbits, asteroid space resources

should only be in this dynamical environment if they are to be used imminently.

Lingering in orbit would require expensive stationkeeping costs and high risk to other

actors in the area.

2. Due to the unstable environment of L2 Lyapunov orbits, asteroid space resources should

not be placed in a permanent orbit. Stationkeeping costs, while not as expensive as
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L1, would still be expensive.

3. L3 Lyapunov orbits are far more stable than their L1 and L2 sister orbits. It even has

one stable orbit, nFam = 14. This makes them highly advantageous for longer term

orbits that are not expensive for stationkeeping and are low risk.

Figure 5.12: Stability Index, ν, and Period, T, vs. Jacobi Constant, C, for nFam = 29 L2
Lyapunov Orbits. Red is associated with the stability index and, blue is associated with the
period. As the Jacobi Constant increases, the period of the orbit gets smaller, and the orbit
becomes unstable.

The ideal orbits for an asteroid mining orbit architecture are determined by three

key metrics: period, Jacobi Constant, and stability index. Periodicity influences resource

availability for lunar or geocentric space infrastructure, while the Jacobi Constant affects

energy requirements for trajectory changes. Stability index determines orbit stability, crucial



5.2. METRICS: PERIOD, JACOBI CONSTANT, AND STABILITY INDEX 105

Figure 5.13: Stability Index, ν, and Period, T, vs. Jacobi Constant, C, for nFam = 14 L3
Lyapunov Orbits. Red is associated with the stability index, and blue is associated with the
period. As the Jacobi Constant increases, the period of the orbit gets smaller, and the orbit
becomes a little less stable, but remains essentially stable. There is one orbit that merits
the designation stable. It is the orbit with the largest period.

for minimizing stationkeeping maneuvers. Longer period orbits offer frequent access to

Earth or lunar economies and aid in state vector predictability, benefiting asteroid mining

profitability. Jacobi Constant analysis indicates L1 and L2 Lyapunov orbits as energetically

cheaper for transporting resources, while L3 orbits are costlier. Stability index evaluations

reveal L1 and L2 orbits as highly unstable, suitable only for immediate resource use, whereas

L3 orbits offer greater stability, making them advantageous for longer term operations with

lower stationkeeping costs and reduced risk.
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5.3 Manifold Dynamic Flow Structure

As stated previously, the CR3BP stands as a fundamental model for understanding

the dynamics of celestial bodies under the influence of gravitational forces. Within this

framework, stable and unstable invariant manifolds play a crucial role, particularly in the

exploration of periodic orbits such as L3 Lyapunov orbits. These manifolds are trajectories

along which the motion remains invariant and asymptotically converge towards a specific

periodic orbit. Understanding and exploiting these manifolds in association with L3 Lyapunov

orbits offer valuable insights into spacecraft dynamics and mission planning, enabling the

construction of orbit architectures. Manifolds associated with each L3 Lyapunov orbit will

be plotted and briefly described.

As a side note, since stable and unstable manifolds are the same numerically (all one

has to do is integrate in the opposite direction of time to obtain the other). Quite simply,

the interior branch is the tube of manifolds which initially propagates through the interior

realm of the EMS. Similarly, the exterior branch is the tube of manifolds which initially

propagates through the exterior realm of the EMS. One can easily visually tell the difference.

The exterior branch propagation is less acute than the interior branch propagation.

As one can see in Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20, the interior

and exterior branches are propagated for 6 ∗ T for each L3 Lyapunov orbit, except for

nFam = 14. Because nFam = 14 is a stable orbit, it has no associated branches. Generally,

motion in the rotating frame of reference is prograde. The prograde direction refers to the

direction of motion that is consistent with the orbital motion of m2, the Moon, around m1,

the Earth. Also, the smooth structure of the branch tubes is correlated to the stability

index of each Lyapunov orbit. One can see that in Figure 5.14, the tubes are well defined.

But, at nFam = 9 shown in Figure 5.18, there is essentially no discernible tube structure.
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(a)

(b)

Figure 5.14: L3 Lyapunov Family for nFam = 1,2 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). In both (a) and (b), the interior branch is the red tube of
trajectories, and the exterior branch is the green tube of trajectories.
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(a)

(b)

Figure 5.15: L3 Lyapunov Family for nFam = 3,4 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). In both (a) and (b), the interior branch is the red tube of
trajectories, and the exterior branch is the green tube of trajectories.
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Finally, the direction of the exterior branch is generally through the L1–L2 neck into the

interior realm near the Earth, and the direction of the interior branch is generally through

the L1–L2 neck to the exterior realm. This holds until Figure 5.16, when both branches

begin to propagate into the interior realm, and then in Figure 5.20 the branches maintain a

Lyapunov like structure from its near stability.

GEO orbits are ideal geocentric orbits to execute orbital maneuvers to and from

trajectories of interior and exterior branches. They are ideal for two reasons:

1. Efficiency: Transfer from a GEO orbit to an interior or exterior branch trajectory is

the least expensive. Clearly a medium Earth orbit or a low Earth orbit transfer would

increase ∆V costs, assuming branches do not penetrate deeper than GEO.

2. Accessibility: GEO orbits provide coverage over a wide range of the surface of the

Earth allowing easy satellite–to–ground station communications and vice versa. This

would be very important to maintain communication with the starships engaged in the

mining activities at such close proximity to Earth.

One can see in Figures 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, and 5.27, there are trajectories

of branches that have close approaches, tangent, or intersect with GEO. As Ax of the

Lyapunov orbits increase, the proximity to GEO reduces, and more trajectories cross into

the GEO volume. These select trajectories would enable low ∆V transfers to or from L3

Lyapunov orbits to transfer asteroid space resources. There are two ways to construct

more branches and therefore create more opportunities for close approaches, tangent, or

intersection with GEO: propagate branch trajectories > 50 or propagate n ∗ T , where

n > 7. For this thesis, the number of trajectories propagated and period of propagation

was arbitrarily chosen.
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(a)

(b)

Figure 5.16: L3 Lyapunov Family for nFam = 5,6 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). In both (a) and (b), the interior branch is the red tube of
trajectories, and the exterior branch is the green tube of trajectories.
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(a)

(b)

Figure 5.17: L3 Lyapunov Family for nFam = 7,8 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). In both (a) and (b), the interior branch is the red tube of
trajectories, and the exterior branch is the green tube of trajectories.
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(a)

(b)

Figure 5.18: L3 Lyapunov Family for nFam = 9,10 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). In both (a) and (b), the interior branch is the red tube of
trajectories, and the exterior branch is the green tube of trajectories; however, as the orbits
become more stable, it becomes harder to differentiate between what is interior and what is
exterior.
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(a)

(b)

Figure 5.19: L3 Lyapunov Family for nFam = 11,12 and 50 Manifold Trajectories
propagated for 6 ∗ T (Plotted to Scale). The interior and exterior branches are now nearly
indistinguishable.
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Figure 5.20: L3 Lyapunov Family for nFam = 13 and 50 Manifold Trajectories propagated
for 6 ∗ T (Plotted to Scale). The orbit is very nearly stable, which is why the branches stay
relatively close to the orbit and are indistinguishable from interior and exterior.
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(a)

(b)

Figure 5.21: L3 Lyapunov Family for nFam = 1 (a), 2 (b) and 50 Manifold Trajectories
propagated for 7 ∗ T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic
GEO orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2∗GEO).
The green trajectories are from the stable manifold.
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(a)

(b)

Figure 5.22: L3 Lyapunov Family for nFam = 3 (a), 4 (b) and 50 Manifold Trajectories
propagated for 7 ∗ T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic
GEO orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2∗GEO).
The green trajectories are from the stable manifold, and the red trajectories are from the
unstable manifold.
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(a)

(b)

Figure 5.23: L3 Lyapunov Family for nFam = 5 (a), 6 (b) and 50 Manifold Trajectories
propagated for 7 ∗ T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic
GEO orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2∗GEO).
The green trajectories are from the stable manifold, and the red trajectories are from the
unstable manifold.
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(a)

(b)

Figure 5.24: L3 Lyapunov Family for nFam = 7 (a), 8 (b) and 50 Manifold Trajectories
propagated for 7 ∗ T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic
GEO orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2∗GEO).
The green trajectories are from the stable manifold, and the red trajectories are from the
unstable manifold.
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(a)

(b)

Figure 5.25: L3 Lyapunov Family for nFam = 9 (a), 10 (b) and 50 Manifold Trajectories
propagated for 7∗T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic GEO
orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2 ∗ GEO).
The green trajectories are from the stable manifold, and the red trajectories are from the
unstable manifold.
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(a)

(b)

Figure 5.26: L3 Lyapunov Family for nFam = 11 (a), 12 (b) and 50 Manifold Trajectories
propagated for 7∗T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic GEO
orbit. The black dotted circle is xGEO (the radius was arbitrarily chosen to be 2 ∗ GEO).
The green trajectories are from the stable manifold, and the red trajectories are from the
unstable manifold.
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Figure 5.27: L3 Lyapunov Family for nFam = 13 and 50 Manifold Trajectories propagated
for 7∗T (Plotted to Scale, Zoomed-in to Earth). The blue orbit is a generic GEO orbit. The
black dotted circle is xGEO (the radius was arbitrarily chosen to be 2 ∗ GEO). The green
trajectories are from the stable manifold, and the red trajectories are from the red manifold.
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5.4 ∆ V and GEO–L3 Trajectories

Finally, finding the ∆V , or change in velocity, between GEO orbits and the closest

point of approaches (CPAs), and vice versa, for the manifolds are computed. The ∆V

computations are crucial for designing an orbit architecture application to asteroid mining.

Studying these ∆V requirements helps engineers and scientists optimize spacecraft trajectories,

minimize fuel consumption, and ensure successful missions beyond Earth’s orbit. What

follows is a cursory ∆V analysis to ascertain optimal transfer strategies between manifolds

and GEO orbits.

The Jacobi Constant is a valuable measure for determining an estimated ∆V between

two trajectories. Since the Jacobi Constant remains constant along a trajectory (assuming no

energy input), changes in its value between two orbits indicate an estimate for the required

∆V for a spaceship to transition between them. By comparing the Jacobi Constants of

the initial and final trajectories, engineers can directly assess the energy difference and

thus the ∆V needed for orbital maneuvers. This approach provides a clear and efficient

means of evaluating trajectory transfers and optimizing spacecraft missions by leveraging

the fundamental principles of conservation of energy in celestial mechanics. Figure 5.28

plots the L3 Lyapunov orbit family Jacobi Constants versus the half amplitudes, Ax, of each

orbit in the family, and it plots the Jacobi Constant of GEO orbits. One can approximate

the ∆V via solving the Jacobi equation for each V :

CGEO = 2UGEO − V 2
GEO (5.1)

VGEO =
√
2UGEO − CGEO (5.2)

Ci = 2Ui − V 2
i (5.3)
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Figure 5.28: L3 Lyapunov Orbit Family. Jacobi Constants versus Half Amplitude, Ax plot.
The magenta line represents the Jacobi Constant for a generic GEO orbit. The blue line
represents the associated Jacobi Constant values for each orbit in the L3 Lyapunov orbit
family. As one can see, the constant declines (takes more energy) as the orbit amplitude
gets larger. Therefore, the required ∆V increases.
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Vi =
√
2Ui − Ci (5.4)

∆VGEO/i = |
√

2UGEO − CGEO −
√

2Ui − Ci| (5.5)

where the subscript GEO indicates a GEO variable, and the subscript i indicates the ith

L3 Lyapunov orbit. Plugging in the following constant GEO values, CGEO = 3.68 and

UGEO = 10.296, Equation 5.5 becomes:

∆V = |5.29−
√
2(Ui + Ci)|. (5.6)

A direct maneuver from GEO to a L3 Lyapunov orbit could be expensive, depending on

which orbit and where on that orbit the transfer maneuver would occur. The possible

dimensionalized range shown on Figure 5.28 is ∆V = 0.69km
s
− 1.93km

s
.

However, maneuvering from GEO to a stable or unstable manifold would significantly

reduce the required transfer propellant. A similar ∆V calculation was executed between

GEO and the stable and unstable manifolds from Figures 5.21, 5.22, 5.23, 5.24, 5.25, 5.26,

and 5.27. The ∆V versus Time of Flight (TOF) plots are shown in Figures 5.29, 5.30,

5.31, 5.32, 5.33, 5.34, and 5.35. The possible dimensionalized range from these figures is

∆V = 0.17388km
s

− 0.25571km
s

. A manifold that sweeps into GEO or xGEO will have a

maxima or minima TOF. This is indicated by the parabolic shape of the plots. If one were

to zoom-in, you would see multiple points representing possible ∆V s at a specific TOF

converging to a vertex making a parabola.

Transfers executed on a manifold instead of from GEO will provide significant cost

savings. Using manifolds within the xGEO volume would provide flexibility for an asteroid

mining industry keen on keeping costs low. The only better option would be a transfer from

GEO to a L3 Lyapunov orbit that is tangent to GEO, thereby requiring no ∆V .
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(a) ∆V vs TOF for nFam = 1, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 1, Mani = 50, and T = 7 ∗ T
(Zoomed-In).

Figure 5.29: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume. (b) The zoomed-in view provides a closer inspection of the parabolas. Clearly, a
minimum TOF is identifiable along with the required ∆V . Mission Planners could use this
data to conduct TOF and ∆V trade offs.
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(a) ∆V vs TOF for nFam = 2, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 3, Mani = 50, and T = 7 ∗ T .

Figure 5.30: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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(a) ∆V vs TOF for nFam = 4, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 5, Mani = 50, and T = 7 ∗ T .

Figure 5.31: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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(a) ∆V vs TOF for nFam = 6, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 7, Mani = 50, and T = 7 ∗ T .

Figure 5.32: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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(a) ∆V vs TOF for nFam = 8, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 9, Mani = 50, and T = 7 ∗ T .

Figure 5.33: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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(a) ∆V vs TOF for nFam = 10, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 11, Mani = 50, and T = 7 ∗ T .

Figure 5.34: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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(a) ∆V vs TOF for nFam = 12, Mani = 50, and T = 7 ∗ T .

(b) ∆V vs TOF for nFam = 13, Mani = 50, and T = 7 ∗ T .

Figure 5.35: Each parabola of points represents a manifold that sweeps into the GEO or
xGEO volume. The size of each varies due to the manifolds’ depth of penetration into each
volume.
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Conclusions

This thesis sought to make a contribution to the solution of one of many engineering

and technical challenges in asteroid mining — the material transport of space resources

through the mining cycle. The CR3BP was modelled to derive the EoM in Newtonian

form. DST was leveraged to derive the STM and M, the Monodromy Matrix. A SSM and

NPC was implemented to compute and plot a family of fourteen L3 Lyapunov orbits. IMT

was then applied to find the global hyperbolic invariant stable and unstable manifolds of

thirteen periodic L3 Lyapunov orbits. Ideal L3 Lyapunov orbits and associated hyperbolic

invariant stable and unstable manifolds were identified by analyzing various properties of

those trajectories. Finally, a ∆V was determined to find optimal transfers from GEO to

ideal hyperbolic invariant stable and unstable manifolds and vice versa. Throughout these

discussions, L3 Lyapunov orbits were compared to L1 and L2 Lyapunov orbits in the EMS.

6.1 Summary of Results

This thesis sought to answer the question: what is an advantageous orbit architecture

for an asteroid mining industry in the EMS, which can be leveraged for space resource

transport using Lagrange Point orbits? The answer is: one centered around a L3 Lyapunov

orbit. Not only are they advantageous, they are preferable to L1 and L2 Lyapunov orbits.

Most of the literature on asteroid mining solely focused on designing orbit architectures

132
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Figure 6.1: Basic Orbit Architecture. Depending on which economy is being served — the
Earth, the Moon, or both — will dictate which L3 Lyapunov orbit the space resources should
go to, based off of the previous analysis.

centered around L1 and L2 in the EMS or SES, while L3 orbits were largely ignored in both

systems. This thesis is fills a significant gap in that research. See Figure 6.1 for a basic orbit

architecture.

L3 Lyapunov orbits are more stable, according to the stability index, by several orders

of magnitude compared to L1 or L2 Lyapunov orbits. This is a critical feature for asteroid

mining, because you want to ensure that your rocks stay where you put them! It would be a

disaster if a slight perturbation knocked it off its orbit towards critical space infrastructure,

the Earth, or the Moon. One reason why the literature focused on L1 and L2 is that it was

thought to be a safer region of cislunar space, that is farther from Earth. However, as many

nations seek to develop a lunar presence, this fact will become less clear. Orbital stability

also saves on propellant and ∆V expenditure. While L3 Lyapunov orbits are more stable
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than their sister Lyapunov orbits, most of the orbits are still unstable, where 1 ≤ ν < 2. This

allows greater design flexibility for asteroid mining orbit architecture construction, because

even slightly unstable orbits admit hyperbolic invariant stable and unstable manifolds. It

may be advantageous to use a stable or unstable manifold to arrive in the vicinity of L3 and

then transfer to a nearby stable orbit. On the other hand, one may need to transfer away

from L3 via an unstable manifold. Of course, high energy Hohmann transfers are always an

option for orbit transfers as well.

Another advantage that L3 Lyapunov orbits have over L1 or L2 Lyapunov orbits is

that the inertial orbital path is highly convenient. The L3 orbits with larger amplitudes

have a perigee relatively close to Earth, and some perigees are at lower altitudes than GEO.

These same orbits also cross the orbital path of the Moon before reaching apogee. By

comparison, the inertial trajectories of L1 and L2 Lyapunov orbits maintain an orbital radius

that approximates the orbit of the Moon around the Earth. L3 orbits provide much more

flexibility with the frequent accessibility to Earth and the Moon. Also, given that all SSA

assets are located on Earth and there are no current cislunar SSA assets, orbits that provide

opportunities for state vector uncertainty reduction, thereby enhancing the predictability of

the space resources, are advantageous. See Figure 6.2 for a summary of the metrics.

6.1.1 Limitations

The research presented in this thesis is by no means complete or settled. A portion of

this incompleteness requires further research, which is outlined below. The other portion of

this incompleteness is inherent in the research. The nonlinear nature of the NBP necessitates

simplifications to make the model analytically and numerically tractable. The CR3BP model

assumptions were discussed which simplified the NBP. This is the main limitation of this



6.1. SUMMARY OF RESULTS 135

Figure 6.2: Metric Summary. Based off the metric analysis in section 5.2, L3 Lyapunov
orbits are consider advantageous compared to its L1 and L2 sister orbits.

thesis. The CR3BP approximates reality; it is not reality. It is a medium fidelity model,

which captures the essential dynamics of the system with reasonable computational cost.

Another example of incompleteness that is inherent in the research comes from

numerical computations. While it is not necessary to outline all the sources of error (one

can consult any undergraduate level textbook of numerical methods), one primary source

of error derives from the choice on integration (like truncation error) functions used in the

programming language called Matrix Laboratory (MATLAB). To minimize error as much as

possible, the ode113 function was used for all numerical integration. This function is designed

with a high degree of accuracy. It is an variable-step, variable-order Adams-Bashforth-Moulton

Predict-Evaluate-Correct-Evaluate (PECE) solver for orders up to thirteen.

Finally, the other major limitation of this thesis were the assumptions made about

asteroid mining technology required to exist to consider a technique like this. This was

addressed at the beginning of the thesis, but, as a quick reminder, technical hurdles include
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but are not limited to:

• Ensuring a profitable scheduling optimization of mining missions,

• Modeling unconventional dynamics in the vicinity of irregular asteroid masses or

asteroid systems,

• Designing an effective extraction process of asteroid rock and regolith,

• Analyzing the implications of an asteroid fragmentation event in a MB dynamical

environment, and

• The methods for space resource transport.

These are open questions that other research needs to tackle, a viable asteroid mining

industry depends upon it.

6.1.2 Implications

Aside from the implications associated with developing an asteroid mining industry,

which have been discussed throughout here, there are military and commercial implications

of this research. First, the military implications: if a country or a military is attempting

to monitor and detect activity in the cislunar environment, it is extremely difficult due to

the nonlinear environment and vastness of the volume of space. However, if one is on the

flip side of that coin, that is evading detection, then the cislunar environment is your friend.

This research has demonstrate that there are multiple stable and unstable manifolds that

propagate near xGEO and GEO and into each respective volumes. An adversary could easily

slip into and out of geocentric orbit causing confusion about activity and intentions. For
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example, a hostile actor could hide a spaceship in a L3 orbit and then depart it (or send a

smaller kill vehicle) along a manifold to impact another satellite rendering it inoperable.

Consider the following possible scenarios: Country X keeps tactical or strategic assets

in select L3 Lyapunov orbits. They could be maneuvered to initiate a Pearl Harbor-like

strategic surprise, catching adversary country Y off guard in geocentric orbit. Or consider

country A keeping assets in select L3 Lyapunov orbits as a reserve only called upon to

reinforce depleted or degraded assets elsewhere in cislunar space. Another implication is

considering if assets in a L3 Lyapunov orbit are safe from an orbital nuclear detonation (that

is, an electromagnetic pulse) in space.

A commercial use could be a space garbageship. The general concept of operations

is that its loiter orbit could be a L3 Lyapunov orbit, waiting to engage in active space junk

clearance operations. Once activated, it could leave a L3 Lyapunov orbit along a manifold to

rendezvous with space junk in the vicinity of GEO or closer to Earth. It would collect said

space junk, then it would return to the same L3 loiter orbit, waiting to conduct another space

junk clearance mission. This garbage collection process could also become an integral part of

a future asteroid mining industry or a larger space manufacturing industry. Collected space

junk could be brought to a recycling station, where reusable material could be extracted and

reprocessed for future use. The possibilities abound for commercial applications of these

advantageous L3 orbits.

6.2 Recommendations for Future Work

There are plenty of avenues to build upon this research or further complete it. This

thesis found that the properties of L3 Lyapunov orbits make them ideal for asteroid mining

compared to their sister L2 and L3 orbits. However, much more research remains to be
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executed to arrive at realistic solutions which can be implemented for asteroid mining. This

research can be separated into several categories in no particular order:

1. Generalize to Higher Fidelity Models: This work only implemented the planar CR3BP

model, which is considered a medium fidelity dynamic model. Future research should

investigate if these conclusions hold in higher fidelity models, like the spatial CR3BP,

which accounts for motion along the ẑ–axis, and the spatial Elliptic Restricted 3–Body

Problem (ER3BP), which accounts for the eccentricity of the orbit of m2. Also, the

inclination of GEO orbits needs to be accounted for, as well.

2. Study other Orbit Families: This work was scoped to only study the planar (x − y

plane) L3 Lyapunov orbit family. However, there are many other periodic orbits that

may be better or optimal for asteroid mining. For example, other orbit families that

could be investigated are the planar resonant orbits; the P2–centered DPOs, DROs,

and Low Prograde Orbits (LPOs); Halo orbits, and Short and Long Period orbits.

3. Study L4 and L5: While the triangular Lagrange points, L4 and L5, have a low Jacobi

Constant (high energy), they can be marginally stable depending upon the value of

µ. In the EMS, L4 and L5 are marginally stable. Many of the periodic orbits are

either stable or only slightly unstable. These are good candidates to research to gauge

usefulness for an asteroid mining industry.

4. Stationkeeping: Strategies exist for a variety of stationkeeping missions. They could

be categorized into long term or short term strategies. A short term strategy focuses

on reference orbit maintenance, whereas a long term strategy is less concerned with

tight reference orbit maintenance. Which is best? Stationkeeping could be very low

cost. This may be a reasonable trade off to forego stable L3 Lyapunov orbits. More

analysis is required.
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5. Dynamics of Maneuvering Asteroid Resources: How asteroidal resources were to be

impulsively maneuvered throughout its orbit architecture was not addressed in this

thesis. In real life, the mass will not be homogeneously distributed, and the shape

of the resources will not be perfectly spherical. This will have a huge effect on its

moment of inertia matrix and, therefore, its rotational and translational dynamics.

The question of receiving asteroid resources upon entering the EMS and inserting it

into an orbit is unresolved.

6. Optimal Spaceship and Orbital Routing: The spaceship routing problem seeks to

determine the optimal design of orbits and trajectories used by an asteroid mining

industry to serve customers. The orbital routing problem integrates the operational

spaceship routing problem with the strategic decisions of where to locate critical

infrastructure of the asteroid mining industry and its customers. Simulations need

to be conducted to determine how an asteroid mining industry could impact other

aspects of the cislunar and geocentric economy. Artificial Intelligence (AI) may prove

useful in this endeavor.

6.3 Finio

This thesis demonstrated that L3 Lyapunov orbits are optimal to build an orbit

architecture for an asteroid mining industry in the EMS. There are many hurdles that remain

to make such an industry viable. But, that does not mean that it is impossible and all efforts

should be abandoned. It is, in fact, this complexity and difficulty that will attract ingenious

and determined entrepreneurs and researchers to solve these challenges.

Aside from the technological hurdles, there are respected and influential voices in

society that argue that resources and attention ought to be focused on solving the pressing
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crises on Earth. If this mindset predominated in the past, how could society advance if all

the innovators and inventors waited for perfect utopian conditions before they implemented

their designs? In fact, innovation, exploration, and crisis are historically interconnected.

Pressing world crises cannot be solved without innovation and exploration. Certainly, there

are multiple crises that require solutions. However, space exploration, generally, and asteroid

mining, specifically, will play a role in the development of solutions to these problems. The

exposition of this thesis is but a small part of realizing that future.
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Appendix A

Glossary

• Absolute — Uniformity everywhere.

• Centrobaric — The property of possessing a center of gravity.

• Homogeneity — Uniform at every point.

• Infinite Extendibility — There are no gaps [65].

• Irreversible — Cannot be restored to its original state.

• Isotropy — Uniform in all directions.

• Punctiform — Having the shape of a point.

• Spacetime — Roger Penrose defined it as “that arena within which all the phenomena

of the physical universe appear to take place” [65].

• syzygy — A conjunction or opposition of celestial bodies.
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