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ABSTRACT

The adverse economic impacts of harmful algal blooms can bemitigated via tailored forecastingmethods. Ad-

equate provision of these services requires knowledge of the losses avoided, or, in other words, the economic

benefits they generate. The latter can be difficult to measure for broader population segments, especially if

forecasting services or features do not yet exist. We illustrate how stated preference tools and choice exper-

iments are well suited for this case. Using as example forecasts of respiratory irritation levels associated with

airborne toxins caused by Florida red tide, we show that 24-hour predictions of spatially and temporally refined

air quality conditions are valued highly by the underlying population. This reflects the numerous channels and

magnitude of red tide impacts on locals’ life and activities, which are also highlighted by our study. Our ap-

proach is broadly applicable to any type of air quality impediment with risk of human exposure.
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INTRODUCTION

Harmful algal blooms (HABs) can cause serious economic damage in the United States and
around the world by negatively impacting commercial and recreational fisheries, aquaculture,
seafood markets, tourism, and public health (Hoagland et al. 2002; C. M. Adams et al. 2018;
Jin et al. 2020; Plaas and Paerl 2021). As discussed in Jin and Hoagland (2008) and Jin et al.
(2020), predicting the occurrence and intensity of HABs can alleviate these costs, by allowing
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decision-makers to adjust economic activities to mitigate impacts. Thus, HAB predictions carry
economic value, and this value, in turn, needs to be understood by private and public investors
for the efficient allocation of funds to develop and refine HAB forecasting systems (Jin et al.
2020).

Jin and Hoagland (2008) present a conceptual framework of deriving the value of HAB pre-
dictions in terms of re-optimized harvesting decisions and apply it to the New England shellfish
sector. However, their model requires assumptions on how exactly HABs affect decision-makers,
and what mitigating actions they take in reaction to the forecast. While this may be feasible for a
specific, well-understood sector of the economy, it is a tall order when contemplating forecast
values for a broader residential population. This is especially true when the envisioned forecast
system does not yet exist, and/or the HAB under consideration has the potential to affect locals
via multiple channels, triggering a wide range of mitigating actions.

In such a case of nonexistent or difficult-to-characterize markets, survey-based stated pref-
erence (SP) methods constitute an attractive alternative to structural, market-based models to
value forecasts. In a nutshell, this approach elicits the monetary value of the commodity or ser-
vice under consideration (here: HAB forecasts) by building a hypothetical market for the service
and capturing respondents’ “purchasing” decisions. This can be accomplished without knowing
every behavioral nuance that links people with the nonmarket good under consideration (e.g.,
Brown 2017; Freeman 2003; Phaneuf and Requate 2017). If properly implemented, following
best practice in survey design and estimation, SP methods have been shown to generate realistic
estimates of individuals’ true value, or “willingness to pay” (WTP), for such goods (Johnston,
Boyle, et al. 2017).

We illustrate this approach within the context of HABs of Karenia brevis, commonly referred
to as “red tide” (RT), in southwest Florida. These blooms are known for causing respiratory ir-
ritation and illness in humans via aerosolized toxins, among other environmental impacts. Spe-
cifically, we elicit the economic value to residents of five southwest Florida counties of a hypo-
thetical RT air quality forecast that improves over existing information systems, using an SP
approach anchored in a state-of-the-art economic choice experiment. While there exists a con-
siderable body of literature on the value of weather and climate forecasts to agriculture and other
sectors (e.g., R. Adams et al. 1995; Johnson and Holt 1997; Solow et al. 1998; Freebairn and
Zillman 2002; Lazo and Chestnut 2002; Rollins and Shaykewich 2003), contributions that value
air quality predictions, HAB-related or otherwise, are less abundant.1

We estimate the annual value of this improved forecasting system at $17–$45 per household,
depending on stipulated spatial coverage and accuracy. This aggregates to approximately $14.5–
$37 million per year for the five-county region (5CR) at large. We believe that these figures con-
stitute a useful starting point to assess the potential net benefits to the local population of more
refined RT forecasts and information systems. At the same time, the upper end of our estimates
for fully accurate forecasts can be considered a (very conservative) lower bound for the economic
costs caused by RT air contamination via their interference with human outdoor activities.
1. Petrolia et al. (2019) implement a contingent valuation study to elicit the willingness to pay by residents of five US Gulf
states to obtain access to a current-conditions information system for 76 Gulf Coast beaches. While their envisioned bundle of
conditions includes RT respiratory risk, it does not specify any further attributes such as spatial and temporal coverage or accuracy,
as is the case in our CE. More importantly, their stipulated service is a “now-cast,” giving current conditions, while our system is
described as an hourly forecast reaching 24 hours into the future.



Value of Harmful Algal Bloom Forecasts | 000
To our knowledge this work constitutes the first effort to quantify, in monetary terms, so-
cietal benefits of forecasts for aerosolized ecotoxins, or, for that matter, any type of air quality
problem.2 In passing, our survey also reveals in more detail than provided by existing studies
the diversity and intensity of outdoor activities enjoyed by 5CR residents, and the numerous
ways in which past RT episodes have interfered with these endeavors and triggered mitigating
actions.

RED TIDE IMPACTS AND EXISTING INFORMATION SOURCES

In recent years, blooms of RT have increased in frequency, intensity, and geographic spread
along the Florida Gulf Coast (e.g., Alcock 2007; Brand and Compton 2007; Nierenberg et al.
2009; Fleming et al. 2011; Corcoran et al. 2013; Stumpf et al. 2022). Karenia brevis produces
powerful neurotoxins (“brevetoxins”) that can cause widespread mortality to fish, marine mam-
mals, and sea birds, as well as respiratory irritation and illness in humans as RT cells get broken
up by wind and wave action and mixed into the ambient aerosol (Backer et al. 2003; Fleming
et al. 2011; Kirkpatrick et al. 2006; Kirkpatrick et al. 2011). From October 2017 through the win-
ter of 2018/19, the Florida Gulf Coast experienced the most intense and longest RT bloom in
decades, at times stretching over 150 miles of coastline, and producing RT concentrations in
the tens of million cells per liter (Wei-Haas 2018; National Ocean Service 2019).3

Documented economic consequences of RT events include revenue losses to businesses and
tourism, public health costs, beach cleanup expenses, and direct welfare losses to residents and
visitors via diminished recreational opportunities and interference with outdoor activities (Larkin
and Adams 2007; Morgan, Larkin, and Adams 2008, 2009, 2010, 2011; Hoagland et al. 2009).
While scientific efforts are ongoing to curb RT blooms through prevention and control methods,
the predominant management strategy to date has been mitigation, via early detection and avoid-
ance of human contact (Alcock 2007; Corcoran et al. 2013). In part, this is achieved through
online information free to the public on current and expected RT cell counts and irritation levels.
For example, Mote Marine Laboratory and Aquarium (MML) in Sarasota, Florida, manages the
Beach Conditions Reporting System (BCRS), which provides twice-daily updates on current RT
irritation levels at 37 beach locations along the Florida Gulf Coast (Nierenberg et al. 2009; Mote
Marine Laboratory and Aquarium 2020). These reports are based on self-experienced or ob-
served frequency of coughing and sneezing by trained beach sentinels, such as lifeguards. Sim-
ilarly, the Florida Fish and Wildlife Conservation Commission (FWC) maintains a website that
summarizes RT concentrations from water samples, observed over the preceding two weeks. It
also gives a link to detailed reports on RT concentrations for a given sampling day and site, and
offers a translation of cell counts to potential respiratory irritation levels that may be experienced
nearby (Florida Fish and Wildlife Conservation Commission 2020).

While the BCRS and FWC sites focus on past and current RT conditions, the National Oce-
anic and Atmospheric Administration (NOAA) issues biweekly to weekly forecasts for RT
blooms via its Gulf of Mexico Harmful Algal Bloom Forecast (HABF) website. The website
provides a three- to four-day forecast of potential respiratory irritation for four target regions,
2. The only study we are aware of that focuses on the value of air quality forecasts is Garner and Thompson (2012). However,
their stylized loss-cost model requires as input an assumption of lost societal benefits, rather than estimating them.

3. In comparison, Kirkpatrick et al. (2006) suggest a concentration of 100,000 cells per liter as the toxin level that affects human
health. This level is also referred to as a “typical bloom concentration” in Vargo et al. (2008). Concentrations of under 1,000 cells
per liter are generally considered standard ambient levels of Karenia brevis (Nierenberg et al. 2010).
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including Northwest and Southwest Florida, respectively. Within each region, expected irrita-
tion levels are given for smaller subareas for each of the following three days. In a similar vein,
experimental RT respiratory forecasts are currently underway in selected Gulf Coast counties by
combining Karenia brevis cell counts based on water samples with wind forecasts produced by
the National Weather Service to generate predictions of RT irritation levels in three-hour incre-
ments, up to a 24-hour forecast window (Gulf of Mexico Coastal Ocean Observing System 2020;
National Centers for Coastal Ocean Science 2020).

Rather than eliciting values for existing RT information and forecast systems, we propose
a hypothetical, more advanced system that fills important shortcomings of existing sources by
better capturing the pronounced spatial and temporal variability of RT aerosol concentrations
(Nierenberg et al. 2009) and their ability to travel inland for considerable distances (Kirkpatrick
et al. 2010). Accordingly, the envisioned system features broader spatial coverage that includes
inland areas, and higher spatial and temporal resolution than existing sources. These improve-
ments are essential to allow users to make informed and refined day-to-day plans for outdoor-
based activities.

METHODS

CONCEPTUAL AND ECONOMETRIC MODELING

Our conceptual modeling framework is anchored in random utility maximization theory, which
stipulates that individuals gain benefits (“utility”) from a given choice option (here a specific
forecast scenario), but that the components feeding into the underlying utility function are only
partially observed by the researcher. The random utility maximization approach to economic
research was pioneered by McFadden (1974) and has since become one of the dominant theo-
retical foundations for economic valuation.4

Following this general approach, we let the indirect utility function for person i, choice oc-
casion t, and forecast alternative j be given as the following:5

Uitj p z0itjv 1 l mi – Pitj
� �

1 eitj, with

eitj ∼ EV 0, 1ð Þ,
(1)

where vector zitj comprises forecast attributes, mi denotes annual income, Pitj is the price or
“bid” associated with the forecast scenario, and eitj captures all other components that affect util-
ity but that are not visible to the analyst. In essence, this indirect utility function can be inter-
preted as a reduced-form expression that succinctly captures all utility-enhancing underlying
actions that individuals would be able to take to mitigate RT impacts, given forecast features zitj.

If the error component of this indirect utility function is identically and independently dis-
tributed following a type I extreme value distribution with zero mean and unity scale, as noted in
the second line of equation 1, then the probability of i selecting option j on occasion t can be
conveniently expressed as the following:
4. For accessible introductions to random utility maximization theory and applications, see for example Freeman (2003), Train
(2009), and Phaneuf and Requate (2017).

5. The term indirect utility refers to an envelope function that reflects maximized utility over all other goods and services,
subject to prices and a budget constraint. See for example Mas-Colell, Whinston, and Green (1995).
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prob yitj p 1
� �

p
exp x0itjb

� �

oJ
jp1 exp x0itjb

� � , where

xitj p z0itj Pitj
� �0

, and b p v 0 – l
� �0

,

(2)

and yitj is a binary indicator that takes the value of 1 if i chooses j on the tth occasion, and a value
of 0 otherwise.

The choice model characterized by equations 1 and 2 is generally referred to as conditional
logit in applied economics and related fields (e.g., McFadden 1974; Train 2009; Greene 2012). A
further distinction of conditional logit specifications is made based on the nature of the given
alternatives. Specifically, our choice options do not represent existing real-world alternatives such
as transportation (“bus,” “car,” “bike”) or food choices (“beef,” “pork,” “chicken”), but rather hy-
pothetical mixes of forecast attributes that vary in composition across alternatives and individ-
uals. As such, our case constitutes what is generally referred to as an “unlabeled” choice exper-
iment (Henscher, Rose, and Greene 2005; Holmes, Adamowicz, and Carlsson 2017).6

Conditional logit models can also differ via their specification of the “status quo” (SQ) alter-
native, that is, a constant “baseline” option given in all choice sets offered to the sample at large.
As discussed below in more detail, the inclusion of an SQ alternative is considered best practice
in choice modeling. It usually captures indirect utility related to some form of nonparticipation
or nonpurchase, and is often modeled by setting the price term Pitj to 0, and by either setting
attribute vector zitj to fixed levels, or replacing it with a single constant term. The latter strategy
is more meaningful in our case, as there are no existing forecasting systems for RT aerosol that
fit into the mold of the attribute settings for the new envisioned system. In consequence, the SQ
indicator in our model succinctly captures whatever a given respondent perceives as the relevant
features of existing RT information sources when deciding between alternatives.7

The sample likelihood for i p 1, ... , N independent individuals, each facing T independent
choice occasions involving J alternatives,8 is given by

p yjb,Xð Þ p
YN
ip1

YT
tp1

YJ
jp1

exp x0itjb
� �

oJ
jp1 exp x0itjb

� �
0
@

1
A

yitj

: (3)

Traditionally, the model in equation 3 is estimated via maximum likelihood using some form of
gradient or search algorithm to determine the optimal coefficient vector b* that maximizes the
6. An important implication of an unlabeled choice setting is that the much cited independence of irrelevant alternatives con-
cern of conditional logit with labeled alternatives, which refers to the potential correlation of choice probabilities across the J op-
tions via unobservable preferences, is less of a concern in our case (Hausman and McFadden 1984; Greene 2012; Train 2009;
Holmes, Adamowicz, and Carlsson 2017).

7. This implies that for our application, a significant SQ effect is a valid indication of the relative benefits or disadvantages of
existing RT information sources compared with the new system, as perceived by respondents. This contrasts with many existing
conditional logit applications with explicit variable settings for the SQ alternative, where the emergence of a significant SQ indi-
cator is often considered a form of undesirable “resistance to change” bias (Boxall, Adamowicz, and Moon 2009; Meyerhoff and
Liebe 2009).

8. Respondents were reminded in the survey instrument to treat each choice occasion as a freestanding, independent event. In
addition, we also estimate a model that is based on only the first choice set presented to each individual, and that is thus free of
potential sequencing effects and correlation via unobservables by design. The output from this reduced-sample model essentially
mirrors results flowing from the full model, as discussed below.
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probability of observing the combined choices of the sample at hand. We opt instead for a
Bayesian estimation framework for the reasons of (1) non-dependence on large-sample (“as-
ymptotic”) theory, (2) obtaining full finite-sample distributions for each primary model param-
eter, and (3) ease of deriving full distributions for predictive constructs, such as the total value of
a forecast with a specific combination of attribute settings.9

Bayesian estimation requires the ex ante choice of a prior distribution for coefficient vector b.
We follow standard practice and specify this density as a multivariate normal with mean m0 and
variance-covariance matrix V0 (e.g., Rossi, Allenby, and McCulloch 2005; Train and Sonnier
2005; Daziano 2013). This prior is them combined with the likelihood in equation 3 to form
the joint posterior distribution, the estimation target in Bayesian analysis. Dropping normaliza-
tion terms that are not needed for parameter estimation, the kernel of this posterior can then be
written as the following:

p bjy,Xð Þ ∝ exp –
1
2

b – m0ð Þ0V–1
0 b – m0ð Þ

� 	YN
ip1

YT
tp1

YJ
jp1

exp x0itjb
� �

oJ
jp1 exp x0itjb

� �
0
@

1
A

yitj

: (4)

Since the expression in equation 4 does not have a well understood analytical form, Bayesian
inference proceeds by taking draws from this posterior via a Metropolis-Hastings algorithm
based on an auxiliary “proposal function” (Hastings 1970). Several different Metropolis-Hastings
strategies exist for the conditional logit model. Based on results from initial runs with simulated
and actual data, we opt for the strategy outlined in Rossi, Allenby, and McCulloch (2005) and
use a multivariate t distribution as proposal density with mean equal to the mode, and variance
matrix based on the second derivative of equation 4, respectively. This also allows for the intro-
duction of two tuning parameters to control sampling efficiency, a scalar for the variance matrix
(t) and degree-of-freedom parameter n. The details of this approach are given in a separate
online appendix.

WILLINGNESS-TO-PAY PREDICTIONS

Formally, the value wi of a forecasting system with attribute settings zp to a given individual is
derived implicitly by equating indirect utility for the SQ at full income mi with indirect utility
associated with the forecast and reduced income mi – wi. In other words, wi is the maximum
amount the individual is willing to trade for the improved system.10 Separating the full coeffi-
cient vector v from equation 1 into a subvector vz that corresponds to actual forecasting attri-
butes, and the SQ coefficient vSQ, this willingness to pay (WTP) can then be derived in straight-
forward fashion as the following:

wijz p, v, l p
1
l

�
z p
0 vz – vSQ

�
: (5)

In practice, draws from the full posterior predictive density for this WTP measure are conve-
niently obtained by evaluating equation 5 for all rp 1, ... , R draws of b flowing from the original
9. Existing examples of Bayesian estimation of conditional logit models include Rossi, Allenby, and McCulloch (2005), Train
and Sonnier (2005), and Daziano (2013).

10. This maximum WTP to obtain an improved level of an environmental commodity or service is also referred to as com-
pensating variation in economic jargon (e.g., Freeman 2003; Phaneuf and Requate 2017).
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posterior sampler. This set of predictive draws, in turn, forms the basis for statistical inference.
This procedure can then be repeated for other forecast settings, as discussed below.

SURVEY DESIGN AND IMPLEMENTATION

Focus group sessions. Field research for this project was initiated via three focus group ses-

sions in December 2019 and January 2020, held at the Mote Marine Laboratory and Aquarium

(MML) in Sarasota, Florida. Each session comprised nine participants who were recruited from

MML’s expansive list of volunteers and citizen scientists. Prospective participants had to be at

least 18 years old and year-round residents of the 5CR. Each session lasted 90 minutes, and par-

ticipants were compensated with $85 for their time. Refreshments and opportunities for breaks

were provided throughout each session. All focus group materials (recruitment forms, informed

consent, focus group protocols) were approved by Virginia Tech’s institutional review board.
The primary aim of these sessions was to learn how recent episodes of RT blooms have

affected local residents, with special focus on air quality. Additionally, the sessions provided a
first opportunity to gauge the perceived usefulness of an improved air quality forecasting system,
prioritize the importance of forecast attributes, and collect initial information on potential will-
ingness to pay for the new system. Focus group moderation followed best practices as outlined
inter alia in Johnston et al. (1995) and Nyumba et al. (2017), such as using nontechnical lan-
guage, letting the discussion flow as freely as possible, and probing for participants’ experiences
rather than opinions.

In sum, the focus group sessions illustrated clearly that RT air contamination causes wide-
spread and severe problems to the local population, including direct health effects and imped-
iments to activities of daily life, not necessarily limited to outdoor recreation. The envisioned
forecasting system was generally perceived as a very useful tool that would help one to “plan
ahead.”

Refinement of forecasting system. Given focus group feedback, literature review, team dis-

cussions, and the features of existing RT information services, we decided to cast the envisioned

system as a 24-hour forecast, with hourly updating, spatial resolution of one square mile, and

coverage along the entire 5CR coastline with a band width of up to 12 miles. Following virtually

all existing RT monitoring systems, hourly forecasts would be issued in terms of the severity of

irritation caused by RT aerosol, from “none” to “high,” with intermediate levels of “low” and

“moderate,” and corresponding color codes of white, yellow, orange, and red. Following MML’s

Beach Conditions Reporting System (BCRS), we consider a level of “low” as affecting primarily

people with chronic respiratory problems; a level of “moderate” as triggering mild symptoms,

such as coughing, sneezing, and eye irritation among the majority of the exposed public; and

a level of “high” as producing severe respiratory symptoms (heavy coughing or sneezing, severe

eye irritation) for the majority of those exposed (Mote Marine Laboratory and Aquarium 2020).

In terms of accessibility, we envision the new system as offered online via a designated website,

and as a cell phone app.
Figure 1 depicts the general idea of what users might see first upon accessing the system, us-

ing as an example a six-mile coverage band and the city of Sarasota. Each panel shows a forecast
at a different point in time. Each panel also features the one-mile grid of spatial resolution, and
the color-coded respiratory irritation levels that govern each square mile at the indicated point
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in time. Users of the system would then be able to click on any desired square to access the
24-hour by-the-hour forecast for a given location. An example is given in figure 2 for the
“St. Armands / Lido Beach” square within the Sarasota grid. As is evident from the figure, fore-
casted hourly irritation is symbolized as a color-coded horizontal band with hourly cells that
span the entire 24-hour window, starting from the most recent hourly update.

In sum, with these envisioned features, the new system would have much higher spatial res-
olution and much more frequent updating than any of the existing RT information sources. It
would also exhibit much broader spatial coverage, even at its smallest band width.11

Design of choice experiment. At the heart of the survey instrument lies the actual economic

choice experiment. This elicitation tool is based on a sequence of choice sets presented to the

respondent. Each set offers several choice options (also referred to as profiles or alternatives).

Each option, in turn is characterized by a set of attribute levels related to the resource or com-

modity to be valued, plus a “price tag,” usually in form of increased taxes or utility bills. Observ-

ing each respondent’s preferred option across sets then allows the analyst to estimate the dollar-

denominated marginal value of each attribute, as well as any desired bundle of attribute settings,

to the underlying population of interest.
Figure 1. Spatial Snapshots of the New Forecasting System at Different Points in Time for a Given Calendar

Day (one-square-mile grid).
11. Specifically, the six-mile band comprises approximately 1,300 forecasting squares. This number is doubled for the 12-mile
band.
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In addition to the selection of attributes and levels as described above, the process of choice
experiment design involves the combination of attribute settings to form a profile, the grouping
of profiles into choice sets, and the blocking of choice sets into manageable sequences that can be
presented to different subsets of survey respondents. Accessible descriptions of these tasks and
underlying techniques are given in Henscher, Rose, and Greene (2005), Johnson et al. (2007),
and Holmes, Adamowicz, and Carlsson (2017).

The number of attributes and levels is typically chosen to adequately characterize the re-
source or commodity under consideration while at the same time acknowledging the cognitive
limitations of respondents (see, e.g., De Shazo and Fermo 2002; Swait and Adamowicz 2001;
Boxall, Adamowicz, and Moon 2009). With that in mind, we settled for three attributes that cap-
ture the most salient features of the envisioned system: the width of spatial coverage along the
coastline, the degree of accuracy of the forecast for the first 12 hours, and the degree of accuracy
for the second set of 12 hours, counting from the most recent forecast update available to the
user. We express spatial coverage in terms of a band of either six- or 12-mile width, stretching
along the entire five-county coastline. Figure B1 in the online appendix provides a bird’s-eye
view of the spatial bands, while figure B2 depicts more localized examples of these bands for
selected coastal population hubs. Both figures were also shown to respondents in the final survey
questionnaire. As can be seen from figure B1, both bands cover all existing sampling locations of
MML’s BCRS, with the 12-mile version extending both farther inland and into the Gulf.

Accuracy, in turn, is quantified as the percentage of correctly forecasted degrees of irritation
over a 12-hour period, with precision levels set at 50%, 75%, and 100% for both the first and
Figure 2. Example of a Square-Specific Forecast. A color version of this figure is available online.
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second 12-hour window. An example of the notion of accuracy for the first 12 forecasted hours,
also depicted in the final questionnaire, is given in online appendix figure B3. The bottom hor-
izontal color bar gives the (hypothesized) fully accurate forecast, while the bars stacked above
depict forecasts with three inaccurate cells (p75% accuracy) and six inaccurate cells (p50%
accuracy), respectively. For simplicity, respondents were instructed to assume that false forecasts
would deviate from the truth by no more than one irritation level, in either direction.

The set of three forecast attributes is complemented by a price variable, which we specify at
four uniformly spaced levels of $5, $15, $25, and $35. These bids were informed by fees suggested
by focus group participants for various stylized sample forecast systems, by WTP estimates pro-
duced by a similar choice experiment study on weather forecast improvements (Lazo and Chest-
nut 2002), and by existing annual subscription fees charged for weather-related online services.12

These four bid values performed well in pretesting, and were thus retained for final survey im-
plementation. The actual payment vehicle given in the survey was an annual cost in form of
“new local taxes and fees,” as described below in more detail. Table 1 provides a summary of all
choice experiment attributes and corresponding levels.

The full factorial of these attribute settings produces an initial set of 72 choice profiles (also
referred to as “options” or “alternatives”), each with a unique combination of attribute levels.
Eliminating unrealistic profiles that show higher accuracy for the second set of 12-hour forecast
than for the first set leaves a starting set of 48 unique profiles. These alternatives were then
grouped into choice sets of two actual options, plus the SQ option of existing information
sources at a cost of $0. This setup of “two1 SQ” is by far the most common template for choice
experiments within the realm of environmental economics, balancing a manageable cognitive
burden on the respondent with adequate statistical efficiency in estimation (e.g., Ferrini and
Scarpa 2007).13

The final number of choice sets to be used in the actual survey is driven by two considera-
tions: the number of sets to be shown to a given respondent, and the minimum number of
Table 1. Attributes and Levels

Attribute Description Level Settings

Spatial coverage (band) Width of coverage band along five-county coast, miles 6, 12
Accuracy, first 12 hrs (acc1) Percentage of correctly forecasted hourly irritation levels

out of 12, first 12 hours counting from most recent
update 50, 75, 100

Accuracy, second 12 hrs (acc2) Percentage of correctly forecasted hourly irritation levels
out of 12, second 12 hours counting from most recent
update 50, 75, 100

Price (bid) Annual tax per household $5, $15, $25, $35
12. Examples include cell phone app
Apps 2020), and Storm Shield (E. W. Sc
also overlaps to a large extent with that c
extends well beyond their highest bid of
pacts as opposed to their more general
cutoffs appears justified.

13. Inclusion of the SQ option is also
on differences across utilities, including
discussed in Johnston, Boyle, et al. (201
lications such as Weather Radar Live (Weather or Not Apps 2020), W
ripps Company 2020), all of which charge approximately $20–$25 per
hosen by Petrolia et al. (2019) for their beach conditions valuation stu
$10. However, given our exclusively local population living near the
population of beachgoers residing in five US Gulf Coast states, this

an econometric requirement given our random utility setup describe
baseline conditions. It is also consistent with best practices in stated p
7).
eather Live (Apalon
year. Our bid range

dy, though our range
epicenter of RT im-
difference in upper
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observations the analyst wishes to collect per set. Given expected sample sizes and model param-
eters to be estimated, we settled for a total of 20 choice sets administered in five different blocks
of four sets each. That is, each respondent was randomly assigned to a given block, and presented
with four corresponding choice sets. This assures the identification of all model parameters, while
keeping cognitive requirements and survey completion time at manageable levels. Blocks of four
sets are, again, a common choice in environmental economic research (Ferrini and Scarpa 2007).

From a statistical perspective, the optimal grouping of alternatives into the 20 choice sets fol-
lows a D-optimality criterion that is based on an optimization algorithm that iteratively and re-
peatedly groups options into choice sets until the determinant of the covariance matrix of esti-
mated parameters (under specific modeling assumption) is minimized (Johnson et al. 2007;
Ferrini and Scarpa 2007; Rose and Bliemer 2009; Holmes, Adamowicz, and Carlsson 2017).14

During this process, we impose the additional restriction that a choice set cannot contain option
pairs such that one option perfectly dominates the other, such as by offering wider coverage and
higher accuracy at an equal or lower price tag. Figure B4 in the online appendix shows an ex-
ample of a choice set, in the same format as shown to survey respondents.

Survey instrument. The design of the survey instrument was informed by the focus group ses-

sions described above and a pretest (see below). The questionnaire is grouped into four main

sections. The first section provides detailed background information on RT blooms along the

Southern Florida Gulf Coast. It then asks respondents how and to what extent they have been

affected by poor air quality associated with RT across a broad set of outdoor activities, and what

mitigating actions, if any, they have taken in the past.
The second section summarizes existing public information systems for RT cell counts and

irritation levels for the region, and elicits familiarity with these (free-of-charge) services. This is
followed by an introduction of the envisioned new forecasting system, and preparatory informa-
tion and primer questions for the actual choice experiment.

The third section presents the four choice sets as described above and collects the four cor-
responding choice decisions. It also features two important follow-up questions. The first, of-
fered to those who choose the SQ option on all four occasions, identifies problematic responses
that are not based on considerations of benefits and costs, and/or indicate disbelief of provided
factual information. These “protest votes” can bias estimation of economic values, and they are
generally excluded from final model estimation (Meyerhoff, Bartczak, and Liebe 2012; Johnston,
Boyle, et al. 2017). In our application, protest responses were flagged as those that reflect opin-
ions that the new system ought to be covered by existing fees and taxes, that it will not be sci-
entifically feasible, and/or that it would channel resources away from other efforts to combat RT
(despite reassurances to the contrary earlier in the survey). The second follow-up question asked
respondents who chose an actual forecast option on at least one occasion for their primary mo-
tivation(s) of doing so.

The final questionnaire section collects standard demographic information, such as location
of residence by zip code, household size, education level, and income category.15

Throughout the development of the survey instrument, care was taken to follow best practices
in stated preference research, as mapped out in Johnston, Boyle, et al. (2017). These interventions
14. We use Stata’s dcreate function to accomplish this task, as well as for the grouping of choice sets into blocks.
15. The full survey instrument is available from the authors upon request.
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are designed to align the choice experiment as closely as possible with a real-world voting context
to avoid biased responses that can arise because of the hypothetical nature of the commodity or
service in question, or via a number of other undesirable channels that are often related to poor or
incomplete survey design (Mitchell and Carson 1989; Holmes, Adamowicz, and Carlsson 2017;
Johnston, Boyle, et al. 2017). For example, we presented respondents with a realistic and binding
decision rule, that is, with a linkage between their vote and the potential implementation of the
new forecasting system. Specifically, we explained that (1) their responses would help public of-
ficials and organizations understand the type of forecasting system they would support in an ac-
tual public vote, (2) survey results would be shared with public officials to aid in their decision to
implement the forecast, and (3) implementation decisions, in turn, would hinge on a majority
rule for the preferred forecast version (including no new system). In the same vein, we stressed
that payment in form of “new local taxes and fees” would be mandatory and binding for all res-
idents of the 5CR for as long as they lived in the region, regardless of their vote, should the new
system be implemented.16

By the same token, respondents were reminded that the new system, once activated, would be
accessible to all residents of the research area, regardless of their original vote. As discussed in
Vossler, Doyon, and Rondeau (2012) and Johnston, Boyle, et al. (2017), the combination of as-
suring consequentiality of voting, ideally via a majority rule, and a credible and binding payment
mechanism is essential to avoid free-riding and to induce truthful preference revelation.

Furthermore, we mitigate against potential sequencing effects, that is, undesirable and unob-
servable influences of earlier choice sets and votes on decisions for subsequent sets for a given
individual, by making choice sets “visible” as recommended in Johnston, Boyle, et al. (2017).
This entails a verbal preview of the choice tasks to follow, and a reminder to treat each set as
fully independent and the only options available on a given voting occasion. In addition, we ro-
tated choice sets across subsets of respondents within each block, such that each of the four sets
per block had an equal chance to be seen first by a given participant. This provides the option to
estimate the full econometric model using only “first set” observations, which by construction
circumvents any potential sequencing effects.

To counter any perceptions of best responses or social norms for selecting a forecast option,
we assured respondents that there are good reasons for different people to choose different op-
tions, and that every vote is legitimate, regardless of the chosen alternative.17 In the same vein, to
induce financial discipline, we reminded survey participants of the budget trade-offs implied by
their vote, potentially leaving less money for other private expenses or public contributions.

Lastly, we follow recommendations in Krupnick and Adamowicz (2007) and Johnston, Boyle,
et al. (2017) and collect additional responses at the end of survey section three related to partic-
ipants’ perceptions of (1) the quality and usefulness of background information provided, (2) the
16. As discussed in Johnston, Boyle, et al. (2017), section 4.5, the specification of the payment vehicle is essentially a balancing
act of realism, credibility, and familiarity, with the most important feature of being binding for the entire relevant population to
assure incentive compatibility. For the latter reason, we decided against the use of (ultimately voluntary) subscription fees, such as
for phone apps. Furthermore, since Florida does not have a state income tax, sales taxes can be avoided via a change in purchasing
behavior, and property taxes may not apply to renters, we opted for a vague definition of “new local taxes and fees,” which is well
within the scope of recommendations in Johnston, Boyle, et al. (2017) for situations such as ours. Recent examples in the stated
preference literature that use similarly broad, but binding, “taxes and/or fees” vehicles include Johnston, Holland, and Yao (2016),
Holland and Johnston (2017), Johnston, Schultz, et al. (2017), Parthum and Ando (2020), and Choi and Ready (2021). We further
note that our stipulated payment vehicle was not met with resistance or protest in focus groups and pretest.

17. Mitchell and Carson (1989) refer to such unintended predisposition of respondents towards specific responses as “implied
value cues,” and list these as one of the main sources of potential bias in stated preference research.
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realism and consequentiality of the voting environment, and (3) the freedom to form their own
opinion and make their own voting decision. As described below in more detail, we use results
from these questions in conjunction with flagged protest votes to identify valid observations that
are suitable for econometric estimation.

Survey implementation. The survey questionnaire was pretested online in May 2020, using

the original focus group participants as test sample. All 27 individuals provided responses. This

led to minor modifications in the questionnaire, but generally provided evidence that the back-

ground information was clear, the choice tasks were well understood, survey length was appro-

priate, and the price/bid amounts in the choice sets were within reasonable range.
The final survey was administered online by a professional polling firm (Qualtrics) between

June and September 2020. Respondents had to be at least 18 years of age and permanent resi-
dents of the 5CR. Each participant had to agree to an informed consent form prior to accessing
the questionnaire, in accordance with regulations of Virginia Tech’s institutional review board.
Survey participants were recruited from several opt-in panels accessible to the firm. To ensure
representativeness of the resulting sample of participants relative to the underlying target pop-
ulation, the sample was stratified according to predetermined age and income groups, as well as
the presence of children under the age of 18, based on official census data for the 5CR. Partic-
ipants received monetary compensation of undisclosed magnitude. The survey firm provided
initial quality control by screening out individuals who skipped 10% or more of the survey ques-
tions or completed the survey in a time less than 50% of the sample median. This figure, in turn,
was derived from an initial “soft launch” involving 50 individuals to verify correctness of the un-
derlying survey architecture, such as randomization patterns and linked follow-up questions.18

RESULTS

DESCRIPTIVE STATISTICS

The survey generated 502 properly completed questionnaires, slightly exceeding our target sam-
ple of 500. Basic sample demographics are given in table 2. As is evident from a comparison of
the first and last column of the table, our sample matches up reasonably well with official pop-
ulation demographics for the 5CR, albeit with a slightly larger contingent of females and indi-
viduals age 65 or older, and higher proportions of residents with at least a high school diploma
or a bachelor’s degree, respectively.19

The table also shows that the average respondent has lived within the 5CR for over 14 years,
close to nine of those at the current address. We can therefore expect our sample to be quite fa-
miliar with topics related to RT. Approximately 23% of surveyed households have children age 18
or younger, and a sizable share (close to 29%) comprise family members with pre-existing respi-
ratory conditions.

The survey asked respondents about their participation in 11 designated outdoor activities
(plus an “other” option) over the past 12 months, ranging from a variety of land and water rec-
reational activities, to school- or work-related time spent outdoors. A follow-up question then
elicited the total number of hours spent on each activity by all household members in a typical
18. This initial test sample was not used in final analysis.
19. These deviations from census figures mirror those reported by Morgan, Larkin, and Adams (2010) for their 2001 survey of

1,006 randomly selected Manatee and Sarasota households to study a variety of impacts of RT on the local population.
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week without any RT problems. Table 3 captures responses to the participation question. As is
clear from the table, a large majority of residents (over 88%) spend some time outside over the
course of a year, with the highest percentages observed for beach recreation (close to 73%), fol-
lowed by trail or road endeavors such as jogging and biking (close to 58%), and water activities
other than boating (approximately 57%). Furthermore, over 13% of the sample spends time out-
doors as part of their work or volunteer engagements.
Table 2. Sample Demographics

Demographic Percentage Mean SD Min. Max. Obs. Censusa

Respondent-specific
Female 59.76 502 51.37%
Age 56.35 17.85 18 92 502

18–34 15.94 19.38%
35–64 40.43 42.69%
651 43.63 37.93%

HS diploma or higher 97.61 502 89.58%
BA or higher 46.22 502 30.97%

Years lived at current address 8.74 8.10 0 47 502
Years lived in current county 14.15 11.93 0 50 500
Years lived in five-county region 14.73 12.38 0 62 501
HH-specific
HH size 2.27 1.25 1 14 501 2.29
Family members under age 7 7.77 0.16 0.76 0 11 502
Family members aged 7–18 14.74 0.25 0.74 0 6 502 17.09%b

Family members with respiratory conditions 28.86 0.38 0.70 0 5 499
HH income

!$50,000 36.06 41.78%
$51,000–$100,000 39.04 31.48%
$101,000–$150,000 14.74 13.99%
$151,000–$200,000 4.98 5.49%
1$200,000 5.18 7.25%
Note: a Source: Florida Office of Economic and Demographic Research. b Percentage of households with chil-
dren ! 17 years of age.
Table 3. Participation in Outdoor Activities, Past 12 Months

Activity
Yes No Not Sure
(%) (%) (%)

Beach activities (walking, jogging, etc.) 72.71 26.29 1.00
Water activities (swimming, snorkeling, etc.) 56.57 42.23 1.20
Nonmotorized water sports (kayaking, SUP, etc.) 21.91 76.49 1.59
Motorized water sports (boat, Jet Ski, etc.) 25.50 72.71 1.79
Fishing/harvesting 28.69 69.32 1.99
Outdoor sports (participant or spectator) 30.28 67.93 1.79
Outdoor school activities (participant or spectator) 12.95 84.86 2.19
Trail/road activities (jogging, biking, etc.) 57.97 40.04 1.99
Park/picnic activities (BBQ, gatherings, etc.) 49.00 49.20 1.79
Special outdoor events (participant or spectator) 47.21 51.20 1.59
Professional or volunteer outdoor activities 13.35 84.66 1.99
Other 4.58 80.68 14.74
Any outdoor activity 88.05
Note: SUP p stand-up paddleboarding. BBQ p barbecuing. N p 502.
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Table 4 summarizes actual time spent outside per week, summed over all household mem-
bers. The first five columns of the table show the share of households that fall into the time
bracket given in the row header. For example, over 45% of households spend between one and
four hours on the beach in a given week, over 13% clock between five and eight beach hours
per week, and over 6% enjoy the beach for nine hours or more. The last column of the table gives
the total number of hours per activity, averaged across households, and using category mid-
points.20 We find that the average five-county household spends close to 17 hours per week on
the listed activities, across all its members. The largest shares of this total go to trail or road activ-
ities (2.73 hours), and beach time (2.70 hours), with the remaining activities distributed across
the 0.6–1.5 hour per week range.

The survey also inquired about time spent in outdoor areas around the house, such as bal-
cony, deck, or yard. As can be seen from the last row of the table, all but 8% of households spend
at least some time in these locations, with the sample average emerging as close to 17 hours per
week. Adding “near home” to “away from home” outdoor time, we find that the typical five-
county household spends close to 25 hours outside in a given week. This stresses the importance
of outdoor time to the local population, but also its ex ante susceptibility to RT aerosol exposure
during a bloom.

This is confirmed by the next block of questions, which inquired about personally experi-
enced RT air contamination effects and mitigating actions taken during a household’s residen-
tial tenure in the 5CR. Responses are summarized in table 5. As captured in the last column of
the table, a majority of households (approximately 57%) had to cancel, postpone, or shorten out-
door activities away from home at least occasionally during past blooms, and over 47% were
Table 4. Time Spent Outside, Typical Week

Hours per Week

Activity
0 1–4 5–8 9–12 112/13–24 124 Total

Hrs.(%) (%) (%) (%) (%) (%)

Beach activities (walking, jogging, etc.) 35.06 45.42 13.35 2.99 3.19 - 2.70
Water activities (swimming, snorkeling, etc.) 44.42 42.23 9.16 2.19 1.99 - 2.12
Nonmotorized water sports (kayaking, SUP, etc.) 77.49 16.33 3.98 1.39 0.80 - 0.91
Motorized water sports (boat, Jet Ski, etc.) 76.29 16.53 4.38 2.19 0.60 - 1.00
Fishing/harvesting 71.91 22.51 3.19 1.20 1.20 - 1.04
Outdoor sports (participant or spectator) 67.93 20.32 5.58 3.19 2.99 - 1.56
Outdoor school activities (participant or spectator) 83.86 10.56 3.59 1.39 0.60 - 0.72
Trail/road activities (jogging, biking, etc.) 37.25 40.24 16.73 3.78 1.99 - 2.73
Park/picnic activities (BBQ, gatherings, etc.) 55.18 38.65 4.18 1.99 0.00 - 1.45
Special outdoor events (participant or spectator) 62.35 33.07 3.19 1.20 0.20 - 1.18
Professional or volunteer outdoor activities 84.26 10.96 3.59 0.60 0.60 - 0.64
Other outdoor activities 91.63 3.19 1.59 1.39 2.19 - 0.59
All outdoor activities 16.64
Balcony, deck, yard 8.17 31.47 22.51 17.33 13.15 7.37 8.21
20. Specifically, the category of 1–4 hours was recoded to
category of 112 hours was conservatively coded as a flat 12.
2.5, the 5
–8-hour
 bracket w
as recode
d to 6.5, and so
 on. The
Note: SUPp stand-up paddleboarding. BBQp barbecuing. Total hrs.p total number of hours/week across
all activities using category midpoints, averaged across households. N p 502.
highest
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forced to relocate a planned outdoor event.21 Over 40% of respondents have been impacted in
similar fashion with respect to outside activities around the house. In terms of direct health ef-
fects, close to 58% have experienced some respiratory irritation due to RT in the past, with over
11% of residents affected to a severe degree. We also note that a nonnegligible share of respon-
dents (3%–9%) report being impacted virtually every day during a bloom in different ways, with
over 3% suffering from severe irritation on a daily basis. A large share of households (over 48%)
also indicate that they have been adversely affected by the odor of decaying fish killed by RT.

The last block of rows in the table captures other, perhaps less obvious, RT effects that were
mentioned during focus group sessions. These include cancellation of visits by family and other
out-of-town guests (with over 30% affected to at least some degree in the past), inability to open
windows in homes and vehicles (49%), problems letting pets out to play or exercise (over 19%),
and even experiencing RT toxins that penetrated through a home or vehicle’s climate control
system (27%).

Additional more profound and pervasive actions taken by some households are summarized
in table 6. As can be seen from the table, a considerable share of respondents, over 18%, actually
moved away from the coast to escape RT effects during the time they have lived in the 5CR. In
addition, 5%–6% of survey participants report having sold a boat or other water sport equip-
ment, having recently put their house or condominium on the market in an effort to move
out of the area, and/or changed their job or retired early in reaction to RT air contamination.

In sum, this section of our survey demonstrates clearly and quantitatively that a large share of
southwest Florida residents have been negatively affected by RT air contamination in the past.
These effects manifest themselves in a variety of ways, from interfering with outdoor activi-
ties, to causing health problems and having serious economic consequences, such as forcing
Table 5. RT Air Quality Effects Experienced Since Living in Research Area

Effect
Never Sometimes Often

Almost
Daily

Can’t
Recall/N/A Affected

(%) (%) (%) (%) (%) (%)

Outdoor activities (away from home)
Cancel/postpone 35.06 40.04 8.57 7.97 8.37 56.58
Shorten 35.06 39.84 8.76 8.96 7.37 57.56
Relocate 44.82 30.88 8.76 7.57 7.97 47.21

Outdoor activities (around the house)
Cancel/postpone 53.98 29.68 6.77 3.98 5.58 40.43
Shorten 50.20 29.88 7.97 5.38 6.57 43.23

Health effects
Irritation (but no doctor) 37.05 40.84 9.56 7.57 4.98 57.97
Severe irritation, see doctor 82.07 6.37 1.79 3.39 6.38 11.55
Bothered/sickened by dead fish smell 45.62 32.87 10.76 4.78 5.97 48.41

Other effects
Guests cancelled visits 60.16 22.71 5.18 2.19 9.76 30.08
Unable to open windows (home or car) 45.42 30.08 9.36 9.56 5.57 49.00
Unable to let pets out 58.37 10.36 4.98 3.98 22.31 19.32
Toxins entered home/car via A/C system 61.55 19.32 4.38 3.39 11.36 27.09
21. Morgan, Larkin, and Adams 2010 find RT i
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residents to move away from the coast or to make career changes. Given locals’ pronounced
preference for outdoor time, and the many avenues through which RT interferes with residents’
everyday life, we would ex ante expect strong demand for a spatially and temporally refined RT
air quality forecasting system, such as described above. This is confirmed by our analysis of the
choice experiment data, as discussed below in more detail.

The survey also asked about respondents’ familiarity with existing RT information sources as
described above, after describing them in detail and providing web links for further information.
As summarized in the first column of table 7, between one-third and one-half of sampled house-
holds are unaware of MML’s BCRS (Mote Marine Laboratory and Aquarium 2020), Florida Fish
and Wildlife Conservation Commission’s RT Current Status website (Florida Office of Economic
and Demographic Research 2020), and NOAA’s Harmful Algal Bloom forecast (NOAA 2020),
respectively. Another 30%–35% of respondents have heard of these sources, but have not used
them in the past. This leaves approximately 27% who actually access the BCRS and FWC sites,
respectively, with a slightly smaller contingent (close to 22%) visiting NOAA’s HAB site at least
on few occasions per month (last column of table 7). In terms of usage frequency, 12%–16% of
the entire sample consults these sites one to four days per month, while 8%–10% tap into these
sources between five and 20 days per month, and a small contingent (1%–2%) rely on these in-
formation sources almost daily. In general, there appears to be room to boost public use of
online sources related to RT current conditions and forecasts. The envisioned new system with
its refined spatial and temporal forecasting features may be well suited to increase information
uptake.22

All 502 participants completed all four of their assigned voting questions. Overall, 386 survey-
takers opted for the new system on at least one occasion, providing the following reasons for their
vote: lowered risk of exposure to RT air toxins (54%), ability to spend more time outdoors (32%),
ability to better plan for outdoor activities (56%), ability for better timing of outdoor activities
(52%), and ability to make better location choices for outdoor endeavors (51%). On the flip side,
134 (close to 27%) of respondents chose the SQ option of “no new system,” that is, existing in-
formation sources at zero cost on all four occasions. Of those, we identify 100 cases (close to 20%
of the total sample) as protest responses, given their follow-up rationale for serial SQ voting as
one or more of the following: “The new system should be provided by the government at no cost”
(60%), “the new system should be covered from existing taxes and fees” (40%), “the new system
22. These aw
(2019), where on
their underlying
research and pub
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Action
Yes No Can’t Recall/N/A
(%) (%) (%)

Moved away from coast 18.33 65.54 16.13
Sold boat/water sport equipment 6.57 67.33 26.09
Put house/condo on market 5.78 75.90 18.32
Changed job or retired early 6.37 74.30 19.32
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will slow down other RT efforts” (8%), and “I do not believe the new system is scientifically fea-
sible” (6%).23

Additional invalid observations were identified via the end-of-section auxiliary questions given
to all respondents. Results from these seven-tiered Likert-style questions are shown in table C1 in
the online appendix, with original response categories “strongly disagree,” “disagree,” and “some-
what disagree” compiled into a single “disagree to some extent” category. An analogous aggrega-
tion was performed on the “agree” side of the response spectrum. As is evident from the table, the
vast majority of participants felt that the survey information was useful and sufficient for decision-
making, showed confidence in their votes, confirmed their perceived realism of the voting occasion,
and did not feel coerced into voting one way or other.We flag the “disagree” responses to the voting
realism and absence-of-coercion questions as invalid observations for subsequent analysis. Since
three of these 37 cases were also protest responses, we retain a valid sample of 368 individuals
for final analysis. With each person providing four voting responses, this translates into 1,472 ef-
fective observations for econometric processing.

ESTIMATION RESULTS

Estimation of the conditional logit model requires the exact specification of the forecast attri-
butes “spatial coverage” (band), “accuracy for the first 12 hours” (acc1), and “accuracy for the
second 12 hours” (acc2), as well as the stipulated price (bid). We opt to express attributes as bi-
nary indicators for each level beyond the lowest setting, while treating the bid variable as a single
(pseudo-) continuous regressor. As discussed in Henscher, Rose, and Greene (2005) and Holmes,
Adamowicz, and Carlsson (2017), this ex ante allows for potential nonlinear attribute effects,
which are confirmed by our estimation results. The implicit baseline policy scenario is thus a fore-
cast system with band width of six miles and 50% accuracy throughout. In accordance with equa-
tion 2, we enter bids as positive amounts, which implies that the marginal-utility-of-income pa-
rameter l is estimated with reversed sign.24
Table 7. Awareness and Usage of Existing RT Online Sources

Source
Never Heard

Of
Heard Of,

but Never Used

Usage Frequency (days/month)

1–4 Days 5–10 Days 11–20 Days 21–30 Days Some Use
(%) (%) (%) (%) (%)

Mote’s BCRS 42.43 30.88 16.33 5.98 2.59 1.79 26.69
FWC’s RT website 37.85 34.86 15.94 5.78 3.78 1.79 27.29
NOAA’s HAB forecast 45.22 33.27 12.35 4.58 2.99 1.59 21.51
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We choose a multivariate normal prior for coefficient vector b with a mean vector of 0 and a
diagonal covariance matrix with all variance terms equal to 100. This extremely vague prior places
the bulk of informational burden on the data, as desired. For the Metropolis-Hastings step in the
draws of bwe set the scalar for the variancematrix in themultivariate t proposal density t to unity,
and the degrees of freedom parameter n to equal 30. These settings yield relatively high acceptance
rates (70%–75%) while keeping autocorrelation across draws at reasonably low levels.

In all cases, we use Geweke’s (1992) split-mean diagnostics to assess convergence. This led to
a choice of 150,000–200,000 burn-in draws depending on model. In addition, we keep track of
autocorrelation via inefficiency factors, as suggested in Chib (2001). For all estimation runs, in-
efficiency factor scores remain in the 1 to 5 range, suggesting acceptably low levels of autocor-
relation. In all cases, we retain 100,000 parameter draws for final inference.25

Primary estimation results are given in table 8 for both the full model using all choice sets
(columns 1–3) and the restricted model using only the choice set encountered first by a given
respondent (columns 4–6). For each model, the table gives the posterior mean, posterior stan-
dard deviation, and the proportion of the posterior distribution to the right of zero (p 1 0). The
latter statistic provides an at-a-glance assessment of whether a given variable’s effect on outcome
is predominantly positive (p 1 0 is close to 1), negative (p 1 0 is close to 0), or ambiguous (p 1 0
is close to 0.5). The more posterior mass to one or other side of zero, the clearer is the signal for
the direction of the effect of the corresponding coefficient.

The first column of the table lists the estimated coefficients. Recall that the implicit baseline
scenario is a forecast with band width of six miles, and 50% accuracy for both the first and sec-
ond 12-hour time window. Considering first the “all sets”model, we find that respondents over-
all strongly prefer even the least extensive and accurate new system over what is currently in
place, as is evident from the numerically large and unambiguously negative sign of the SQ in-
dicator. There is also considerable evidence that a 12-mile band is preferred to the six-mile ver-
sion (with 87% of the posterior distribution of the corresponding indicator in the positive do-
main), and compelling evidence that higher accuracy for the first 12 hours is valued more highly
than lower accuracy, ceteris paribus. The same holds for the second 12-hour time segment for
Table 8. Estimation Results

Variable

All Sets First Set Only

Mean SD p 1 0 Mean SD p 1 0
(1) (2) (3) (4) (5) (6)

SQ –0.803 0.114 0.000 –1.053 0.216 0.000
Band p 12 0.110 0.100 0.866 0.049 0.200 0.595
Acc1 p 75% 0.265 0.144 0.968 0.304 0.279 0.860
Acc1 p 100% 0.942 0.166 1.000 1.091 0.330 1.000
Acc2 p 75% 0.223 0.101 0.987 –0.106 0.207 0.308
Acc2 p 100% –0.007 0.138 0.479 –0.339 0.277 0.111
Price (bid) –0.047 0.005 0.000 –0.049 0.010 0.000
25. Estimation was performed
to 30 minutes, depending on mod
using Matlab on a single Intel Xeon Gold 6136 3.00 G
el.
Hz processor. Ru
n times ranged fr
Note: All sets: full valid sample (Np 368, np 1,472). First set only: Np np 368. Meanp posterior mean.
SD p posterior standard deviation. (p 1 0) p proportion of posterior distribution exceeding zero.
om 20
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the 75% accuracy indicator, while no clear signal emerges for the 100% level, with the corre-
sponding posterior distribution centered close to zero (p 1 0p 0.48). It is possible that this re-
flects some degree of doubt that such a flawless forecast this far out is actually feasible. On the
other hand, and given the larger coefficient estimates for the acc1 indicators compared with their
acc2 counterparts, this lack of “significance” (in slight abuse of classical terminology) may simply
indicate that accurate near-time forecasts are valued more highly than accuracy for time slots
further into the future. The last row of the table summarizes the posterior distribution of the
price coefficient. Reassuringly, this distribution is tightly centered around a distinctly negative
mean, as dictated by economic theory.

The second set of columns in table 8 gives analogous results for the “first set only”model. As
expected, with a 75% reduction in sample size (from 1,472 to 368 observations), this model pro-
duces higher posterior standard deviations, and less discerning p 1 0 statistics. Nonetheless, the
salient estimation patterns observed for the full model remain: a distinctly negative coefficient
for the SQ indicator, a clear preference for higher accuracy for the first 12 hours, and a clearly
negative price coefficient, with almost identical posterior mean as for the “all sets” model. We
take this as indication of the absence of serious bias induced by any sequencing effects in the full
model.

ROLE OF EXPERIENCE WITH EXISTING SYSTEMS

We next examine to what extent experience with one or more of the existing RT information
systems, as described above, may shape preferences for an improved forecast. To that effect
we generate an aggregate 0/1 variable use_exist that indicates whether a given household has used
one of the existing systems in the past, as captured in table 7. Overall, approximately 44% of our
estimation sample falls into that category, leaving 56% of nonusers.

At the same time, we need to control for “outdoor avidity,” that is, preferences for outdoor
activities, to guard against omitted variable problems. This is because households with relatively
stronger preference for being outside will also be more likely to consult with existing RT infor-
mation systems.26 At the same time, more avid households will also have greater need, and thus
likely higher WTP for improved forecasts. This would then be misinterpreted as stronger dis-
satisfaction with existing systems if outdoor avidity is not explicitly captured in the choice model.
To provide this control, we generate a new variable, hours_outside, that (approximately) measures
the total number of hours spent outside by all household members in a typical RT-free week,
based on the binned categories given in table 4.27 We then include this variable alongside
use_exist as interactions with the SQ indicator in an augmented choice model.

Results are given in table 9. As can be seen from the second and third row of the table, both
interaction terms are negative and highly significant, with essentially their entire posterior dis-
tribution to the left of zero (p 1 0 p 0). This suggests that both outdoor avidity and usage of
existing RT information systems increase the probability of voting for the new forecast, and thus
WTP for the new system. Specifically, an additional hour spent outside in a typical week increases
WTP by (0.013/0.047)p $0.27, while having used the BCRS, FWC, or NOAA system in the past
boosts WTP by a large amount relative to nonusers, specifically (0.552/0.047) p $11.75. We
take this as direct indication that these existing systems are considered insufficient and less
26. This notion is strongly substantiated with a simple binary logit model relating use_exist to hours spent outside.
27. To compute this continuous metric, we follow the same approach as for generating the last column in table 4, then add up

over all outdoor activities.
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than effective in providing local households with the information they need to optimize their
outdoor activities. Clearly, there is room for improvement along these lines.

We also note that the augmented model leaves all other coefficients essentially unchanged,
suggesting that attribute and income effects are not dependent on outdoor avidity or familiarity
and/or satisfaction with existing information sources. Since our main interest in terms of welfare
predictions rests with the “typical household” of the 5CR with less focus on the role of household
characteristics or demographics, we opt for the generic baseline models given in table 8 as the
underlying specifications to generate WTP predictions, as discussed in the next section.

VALUE PREDICTIONS

Following the econometric steps outlined above, the posterior distribution of the estimated co-
efficients was combined with all 12 plausible combinations of settings for bandwidth and accu-
racy to generate posterior predictive distributions of WTP for each forecast scenario. Results are
captured in table 10 for both the full and the “first set only” model. For each version the table
shows the posterior predictive mean, as well as the lower and upper bound of the corresponding
highest posterior density interval.28 As is evident from the table, posterior means are generally
comparable between the two model versions, with the restricted model exhibiting wider HPDI
ranges because of the substantially diminished sample size, as expected.

Focusing on the full model as our overall preferred specification, we observe that the typical
five-county household is willing to pay over $17 per year for even the least refined forecast ver-
sion with a six-mile band and only 50% accuracy for both 12-hour segments. This estimate in-
creases to as much as $40–$45 per year for forecasts with higher accuracy, especially for the first
12 hours.29
28. As described inte
given distribution that in
distribution, and/or con

29. The lower end o
for the US population at
welfare estimates are also
$12 per year for their cur
than theirs as our system
household outdoor activ
Table 9. Estimation Results for Augmented Choice Model

Mean SD p 1 0

SQ –0.399 0.137 0.002
SQ # use exist –0.552 0.146 0.000
SQ # hrs. outside –0.013 0.006 0.004
Band p 12 0.114 0.096 0.881
Acc1 p 75% 0.265 0.141 0.970
Acc1 p 100% 0.940 0.158 1.000
Acc2 p 75% 0.222 0.099 0.988
Acc2 p 100% –0.001 0.134 0.503
Price (bid) –0.047 0.005 0.000
r alia in Koop (2003), the a% highes
cludes a% of the density mass. It is
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RESULTS INCLUDING PROTEST RESPONSES

As described above, we exclude problematic responses from our main estimation. To recall,
these are serial SQ voters who explicitly stated that they did not believe that they should pay
for the new system, had doubts that the system was technically feasible (despite being assured
otherwise), and/or worried that the new system would slow down other RT mitigation and pre-
vention efforts (despite being assured otherwise). We also dropped individuals who explicitly
disagreed that they felt confident about their vote or would vote the same way in an actual public
referendum, and/or voted as if costs were real, in addition to those who disagreed with the state-
ment that the survey let them make up their own mind. These exclusion criteria strike us as very
reasonable, and actually quite lenient, in an effort to learn about residents’ preferences in an un-
biased fashion. That said, in the spirit of full transparency, and following recommendations in
Johnston, Boyle, et al. (2017), we also report estimation results for the full sample of 502 survey-
takers in online appendix table C2.

As can be seen from the table, including problematic observations biases essentially all coef-
ficients towards zero, as one would expect in this case, since the added “no” votes lack sensitivity
to both forecast attributes and price. Most strikingly, the formerly strongly negative and highly
significant SQ coefficient is now reduced to a magnitude close to zero, with a less discriminating
signal on sign (based on the p 1 0 statistic). In combination, this leads to substantially lower
WTP estimates, given in online appendix table C3. The most basic forecast is now valued at only
$1.62 per year (compared with $17.37), and the most highly valued forecast elicits a WTP of
only $26.24 (compared with $44.60).

The nature of the problematic responses captured in our survey (lack of voting realism, dis-
regard of budgets, disagreement with “property rights,” etc.) does not give confidence that any-
thing can be learned about true underlying values for this subsample. As such, we consider our
full-sample estimates (with protest observations included) as biased and uninformative, and the
same holds for corresponding WTP predictions. Nonetheless, we will pay attention to the fact
Table 10. WTP Estimates

Forecast Scenario All Sets ($ per HH and year) First Set Only ($ per HH and year)

Band Acc1 Acc2 Mean Low High Mean Low High

6 50 50 17.37 11.61 23.08 22.36 10.50 35.79
6 75 50 23.01 17.71 28.45 28.45 16.76 41.20
6 75 75 27.83 22.21 34.21 26.17 14.42 38.43
6 100 50 37.52 32.03 43.44 44.66 32.35 59.71
6 100 75 42.34 36.30 48.92 42.38 30.24 55.63
6 100 100 37.37 31.67 43.24 37.35 26.67 49.03
12 50 50 19.62 14.58 24.78 22.83 12.48 33.14
12 75 50 25.26 20.07 30.33 28.92 18.59 39.92
12 75 75 30.08 25.00 35.09 26.64 16.79 36.86
12 100 50 39.78 34.68 44.97 45.13 33.78 56.86
12 100 75 44.60 39.65 49.85 42.85 32.67 52.76
12 100 100 39.62 34.48 44.98 37.82 27.73 48.37
Note: All sets: full valid sample (N p 368, n p 1,472). First set only: using only first choice set shown to re-
spondent (Np np 368). Meanp posterior mean. Low [high]p lower [upper] bound of 95% highest posterior
density interval.
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that 23% of initially targeted survey-takers were de facto excluded from our main analysis in our
aggregation exercise below.

AGGREGATION

Approximately 835,000 households live in the five-county area (e.g., US Census Bureau 2021).
Aggregating the annual per household WTP figure of $17.37 for the most basic forecast, as
shown in table 10, produces an aggregate annual value of $14.5 million per year. If we conser-
vatively exclude 23% of these households as potential protest cases whose preferences are simply
not captured by our analysis, this reduces the amount to $11.2 million per year.

It is difficult to determine how these estimated annual benefits stack up against expected
costs of implementing and running the envisioned forecast, given the lack of comparable sys-
tems currently in operation. Petrolia et al. (2019) use an upper estimate for annual costs of
$20.1 million for their current beach conditions information system along the entire Gulf Coast,
from Florida to Texas. If we assume that underlying costs per location (e.g., a single beach or one
of our grid cells) are comparable across systems, and costs scale approximately linearly based on
included main beaches, we could derive an upper bound of $20.1 # (32/76) p $8.5 million,
given that the Petrolia et al. (2019) study includes 76 beaches compared with the 32 beaches cur-
rently monitored via the BCRS along the 5CR coastline. In that sense, our envisioned forecast
would generate positive societal benefits, even under extremely conservative assumptions.

Perhaps a more meaningful comparison can be made along the lines of research budgets.
NOAA recently announced awarding an annual total of $15.2 million for HAB research nation-
wide (NOAA 2021). Approximately $4 million of this amount went to Florida and the Gulf of
Mexico for new and ongoing HAB research.30 These figures certainly appear low compared with
our estimated values for just an RT forecast alone, and a much smaller geographic region.

CONCLUSION

We implement a survey-based choice experiment to estimate benefits to the residential popula-
tion of five southwest Florida counties of improved near-term forecasts for air quality levels as-
sociated with blooms of RT. We consider this both a practical and a feasible approach to obtain
these values, given the many ways in which airborne red tide irritants can interfere with human
activities and choices, and the corresponding multitude of potential mitigating actions—as also
confirmed by our survey. Understanding these benefits, in monetary terms, is essential to deter-
mine the optimal allocation of resources for the provision of these services.

We find that annual benefits are of substantial magnitude, even for the least accurate and spa-
tially extended version of our forecast scenarios. This suggests a real potential to reduce economic
losses associated with RT blooms by refining existing RT information sources. Naturally, a more
conclusive determination of societal net benefits would require better knowledge of the near term
and future costs of implementing this service over the time horizon considered by the policymaker.
Nonetheless, our benefit estimates form an important input to this process. Our proposed stated
preferences framework for the estimation of economic benefits of improved air quality forecasts
is directly applicable to other HAB types that generate airborne toxins, and, more generally, any
type of air quality problem with human exposure, adding to the paucity of work on this topic.
30. This information comes from an internal NOAA email communication shared with/by coauthor Fanara.
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Naturally, some caveats are in order regarding our empirical findings and their interpretation.
First, our forecast scenarios are restricted to deviate in accuracy by no more than one irritation
level in either direction. It is possible that forecasts with “really bad errors” would be valued at
lower levels by stakeholders. In that sense, our estimates might be considered upper bounds
for more error-prone forecast versions. By the same token, the benefits we derive are likely con-
servative lower bounds for the full value of the envisioned forecast system to all stakeholders in the
5CR, such as businesses with outdoor seating, outfitters and charter companies, and event plan-
ners that rely on outdoor venues. Extending this work to include some of these other sectors
of the affected population would be a fruitful extension of this research. We also note that the
upper end of our estimates for a perfectly accurate forecast can be interpreted as a—likely very
conservative—lower bound of the actual annual costs of RT blooms to the surveyed population,
as mitigating impacts with the help of better forecasts will lower, but certainly not erase, all costs
caused by RT.

On a final note, our proposed forecast was designed to provide an intuitive, user-friendly in-
formation environment for human decision-making. From a scientific perspective, the path to
its implementation still presents numerous challenges, such as fully understanding the produc-
tion and movement of Karenia brevis in the ocean and air, as well as the aerosolization processes
of cells and toxins under varying environmental conditions. In that sense, our results stress the
potential benefits to the local population of further investing in these scientific endeavors.
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