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Modeling the Spread of Airborne Particles Associated with Harmful Algal Blooms and 

Plumes of Colored Smoke 

Landon T. Bilyeu 

(Academic Abstract) 

Lakes and oceans are threatened by harmful algal blooms (HABs), caused mostly by toxic 

cyanobacteria. When people or animals drink the toxic water, it can be damaging to their 

health, potentially leading to hospitalization or even death. In some cases, these toxins are 

not just limited to the water, but can become airborne through wave breaking, bubble 

bursting, and spume droplet formation. New information is needed regarding the transport 

and fate of HAB-associated aerosols. The overall goal of this research was to monitor 

particle concentrations and measure meteorological conditions near HAB sites to determine 

the conditions that may lead to increased exposure to HAB cells and toxins in the 

atmosphere. By creating predictions of which conditions and locations will be experiencing 

higher aerosol levels at any given time, models could be used to inform the public and 

policy makers to ensure that appropriate responses and safety measures can be taken. The 

research also includes experiments to study plumes of colored smoke, as a proxy for the 

transport of biological particles such as HAB cells, pollen, and pathogens.  

The first objective of this research was to explore associations between measured weather 

conditions and particle concentrations measured above active HABs and HAB sites using 

drone-based sensor packages. 

The second objective was to monitor wind and particle concentrations near freshwater and 

marine HABs using ground-based sensor packages.  



 
 

The third objective was to model HAB aerosol behavior at a beach level to predict 

respiratory irritation. 

The fourth objective was to use aerial and ground-based sensors and images of colored 

smoke to predict particle concentrations at different distances and intensity levels 

downwind from the source(s).  

  



 

Modeling the Spread of Airborne Particles Associated with Harmful Algal Blooms and 

Plumes of Colored Smoke 

Landon T. Bilyeu 

(General Audience Abstract) 

Certain environmental conditions in lakes and oceans can favor unhealthy amounts of algal 

growth. Overgrowth can lead to harmful algal blooms (HABs). This occurs when algae 

produce toxins that make the water unsafe for humans and animals to drink. Sometimes 

these toxins don’t stay in the water and can become toxic airborne particles. We need more 

information to understand what happens to create and transport these airborne toxins 

produced by HABs. This research aims to monitor particle concentrations and weather to 

find what conditions lead to more aerosolized toxins. Accurate predictions of high levels of 

HAB toxins in the air could be used to alert the public. This work utilized colored smoke 

released outdoors as a visual indicator of particle movement in the air. The specific 

objectives of this research were to (1) find associations between weather and particle 

concentrations at lake HAB sites using drone-mounted samplers at a height above 30 feet 

from the ground, (2) find associations between weather and particle concentrations at lake 

and ocean HAB sites using samplers at a height of 5 feet from the ground, (3) predict 

human throat irritation levels from airborne toxins at the beach level, and (4) use a drone 

sensor, a ground sensor, and simultaneous video footage of a controlled smoke release to 

visually track airborne particles.  
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List of Figures 
2.1 The three different AirDROPS sampling locations (marked with circles) along with 

the location of the wind sensor (marked with a triangle) are labeled on the two sites, 

GLSM and Lake Erie respectively. A wind rose is included below each sample 

location to indicate the different fractions of wind direction and speed recorded 

each day measured in m/s.  

2.2  (A) Engineering model of the AirDROPS package. (B) The AirDROPS package 

attached to the DJI Inspire 2 platform. (C) Calibration flight of the AirDROPS 

adjacent to the sonic anemometer mounted on the flagpole. (D) Sampling mission 

at GLMS, 10 m above the surface of the water. (E) Drone image and aerial view of 

the sampling location at Lake Erie (shown in Figure 1), to the right of the point in 

the image.  

2.3  Selected images from flow cytometry analyses of impinger samples from the 

AirDROPS. (A) Objects from an impinger sample collected above GLSM showing 

brightfield, red filter, and combination of the two. (B) Objects from an impinger 

sample collected above Lake Erie showing brightfield, red filter, and combination 

of the two. (C) Objects from a lake water sample from Lake Erie showing 

brightfield, red filter, and combination of the two.  

2.4  Wind direction (degrees) over the course of the day. The first two graphs represent 

August 5th – 6th, 2019 at GLSM. The third graph represents August 8th, 2019 at 

Lake Erie. The wind direction was determined using a sonic anemometer for 

August 5th – 7th, 2019, and using GLOS data for August 8th, 2019.  
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2.5  Wind speed (m/s) over the course of the day. The first two graphs represent August 

5th – 6th, 2019 at GLSM. The third graph represents August 8th, 2019 at Lake Erie. 

The wind speed was determined by our sonic anemometer for August 5th – 7th, 

2019, and using GLOS data for August 8th, 2019.  

2.6  Airborne particle counts over the course of the day. Data were recorded from a 

PMS7003 OPC onboard the AirDROPS. The first two graphs show flights that 

occurred August 5th – 6th, 2019 at GLSM while hovering 10 m over the water. The 

third graph depicts the flights on August 8th, 2019 while hovering 10 meters over 

the water at Lake Erie. To the right of each graph is the corresponding wind rose 

which shows wind direction and speed for each day.  

2.7  Airborne particle counts recorded from the OPC onboard the AirDROPS, and 

windspeed from the sonic anemometer mounted on a flagpole (GLSM) and drone-

modeled data for Lake Erie. The first two graphs show flights that occurred August 

5th – 6th, 2019 at GLSM while hovering 10 m over the water. The third graph 

depicts the flights on August 8th, 2019 while hovering 10 m over the water at Lake 

Erie.   

2.8 Comparing total particle counts to obj/mL collected by the impinger during the 

AirDROPS flights. The graph depicts the total particle count over the 10-min 

flights for > 0.3 µm particle diameter as well as the obj/mL count in the impinged 

air samples taken at the same time. Samples 2, 7, 8, 9, 10, 13, 14, and 15 were 

collected at GLSM, while samples 17-21 were collected at Lake Erie.  
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2.9  Measured vs predicted particle counts used in the best fit model. The model was 

made using the wind speed, temperature, wind speed*temperature, and wind 

direction*temperature.   

2.10  Calibration experiments for the OPC in the AirDROPS package. Experiments were 

performed in a sealed bag filled with air mixed with different aerosolized particle 

sizes. Experiments 1 and 4 were done with no added particles as a chance to run a 

zero test for the sensors and give a background of particle levels in the bags. 

Experiments 2 and 3 were run with aerosolized 1 µm diameter particles, 

experiments 5 and 6 were run with aerosolized 3 µm diameter particles (data was 

not recovered from the APS in experiment 6), and experiments 7 and 8 contained 

both 1 µm and 3 µm particles.   

3.1  One sampling location at Lake Anna, VA marked in yellow, and the two beaches in 

Manasota, FL and Seagate FL in red are marked where sampling was performed. 

Lake Anna consisted of ground level and drone-based sampling while Manasota 

and Seagate beaches consisted of only ground level sensing.  

3.2  A shows the ground sampling device in location at Seagate Beach FL, December 3, 

2019. B shows a closeup of the impinger actively sampling the air while the 

weather station is running in Florida. C shows the ground sampling device at Lake 

Anna, Virginia collecting near the lake shore on June 30, 2020. D shows combined 

drone and ground sampling at Lake Anna.  

3.3  Onshore and offshore wind profiles showing wind speed as a factor of altitude for 

flights taken over Lake Anna over the course of the day on July 7th, broken down 

based on wind coming from over the land or over the water.   
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3.4 Wind direction at different altitudes over the course of the sampling day on July 

7th, and the ground sensor measured wind directions of the corresponding times.  

3.5  Wind direction source measured over the course of the sampling day, plotted as 

five-minute averages. The first two graphs show the 30th of June and 7th of July 

sampling beach along with the sampler location. The third graph shows the second 

beach site where measurements were made on the 8th of July. To the right of each 

graph is the sensor location with the wind rose for the day overlaid.  

3.6  The graphs show wind direction source measured over time at two different Florida 

beaches in December 2019 plotted as five-minute averages. The top graph shows 

measurements taken at Seagate beach on December 3rd while the bottom graph 

shows measurements taken at Manasota beach on December 4th. To the right of 

each graph is the sensor location with the wind rose for the day overlaid.  

3.7  Particle number concentrations (cm-3) greater than 0.3 microns in diameter 

measured over the course of the day, plotted here as five-minute averages. The first 

two graphs represent June 30th and July 7th at the first Lake Anna beach site and 

the third graph represents July 8th at the second Lake Anna beach site. 

3.8  Particle number concentrations (cm-3) greater than 0.3 microns in diameter 

measured wind direction as five-minute averages during the sampling periods at 

Lake Anna beach sites one and two. The first two graphs depict beach site one 

during the sampling period of June 30th and July 7th. The third graph shows the 

data collected from beach site two on July 8th. 
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3.9  The graphs show particle number concentrations (cm-3) greater than 0.3 microns in 

diameter measured over time at two different beaches in Florida on two days in 

December 2019 plotted as five-minute averages. The top graph shows Seagate 

beach on December 3rd and the bottom graph shows Manasota beach on December 

4th. 

3.10  Measured vs. predicted particle number concentrations (cm-3) of air used in the best 

fit model for Lake Anna collected data. The model was made using wind speed, 

wind direction, temperature, and particle count data collected by the ground sensors 

at Lake Anna. The data was then put into JMP Pro neural network modeling where 

a model equation was trained on a random subset of the data with another subset 

held back for validation. 

3.11  Measured vs. predicted particle number concentrations (cm-3) used in the best fit 

model for Manasota beach collected data. The model was made using wind speed, 

wind direction, temperature, and particle count data collected by the ground sensors 

at Manasota beach. The data was then put into JMP Pro neural network modeling 

where a model equation was trained on a random subset of the data with another 

subset held back for validation. 

4.1  Eight beaches along the Florida Gulf Coast out of 40 for which reporting is 

available from 2011-2019. These eight have the highest number of reported red tide 

respiratory events: six are in Sarasota County and two are in Manatee County. 

4.2  Reports of respiratory irritation caused by red tide for Sarasota County, from 

December 2011 to April 2019. 
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4.3  (left) Correlation of red tide respiratory irritation level between the different 

beaches in Figure 1 as a function of coastline distance. (right) The average 

autocorrelation of a beach’s red tide respiratory irritation level with time. 

4.4  Definition of onshore and offshore wind directions for the beaches studied. The 

standard wind direction convention is used, where direction denotes where the wind 

is coming from. 

4.5  Respiratory irritation level on day t + 1 as a function of the level on day t and the 

wind condition on day t + 1; onshore or offshore winds. 

4.6  Wind-based respiratory irritation model. 

4.7  For Coquina Beach, Manatee County, Florida, the days of actual high respiratory 

risk level are shown, and several 1-day forecast models, during the red tide 

respiratory irritation episode that began August 2018. The probability of a high risk 

day using the Hawkes process model is shown at top. The flat black line represents 

the threshold. When the probability of a high risk day exceeds the threshold, the 

day is forecast as a high risk day. Otherwise, it will forecast as a low risk day. The 

Hawkes model performs best in this case. The wind-based and persistence models 

are shown for comparison. 

4.8  Same data as in Figure 7 but for Venice Beach, Sarasota County, Florida during the 

red tide respiratory irritation episode that began June 2018. The wind model 

performs best in this case. 

4.9  A The varying rate of an example Hawkes process can be seen (top). A Hawkes 

process (middle) tends to have events which cluster in time, whereas a Poisson 
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process with the same initial rate (bottom) produces events that are roughly equally 

spaced in time. The Hawkes process proves to be a good model for many natural 

processes, which also tend to have events which cluster in time. 

5.1 3 panels depicting the smoke release experiments. Panel A shows smoke passing 

over ground sampling devices with a drone sampler flying overhead. Panel B shows 

a different configuration of ground sampling devices with high wind speed creating 

a low plume. Panel C shows the top-down image of smoke release as captured by 

the drone video camera. 

5.2 The method of wind direction processing for each ground sampler with an attached 

weather sensor. When the wind blew in the 180 degree line from the smoke source 

to the sampler it was set to 180 degrees and when the wind blew from the sampler 

towards the smoke source it was set to 0 degrees. Each direction had a range of 1 to 

180 degrees. Crosswinds from either direction would be 90 degrees. 

5.3 The correlation between wind speed and direction with the particle concentration 

measured 10 meters from the smoke plume source. Higher concentrations are 

associated with wind direction blowing the plume towards the sampler, and lower 

wind speeds are associated with higher particle concentrations when the wind is not 

directly towards the sampler. 

5.4 Optical particle counter measurements to have higher concentrations of smoke the 

closer the sensor was to the plume source, as seen with OPC A having a higher 

concentration of particles than OPC B despite similar smoke intensity levels. 
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5.5 The absorbance measured from each of the 6 high volume samplers. R1 refers to 

the first sample period, R2 the second sample period, and R3 the third sample 

period. In R1 Ed samplers B, D, and E were downwind at 7.5, 15, and 25 meters, A 

and F were crosswind at 15 meters and C was upwind at 15 meters. For R2 and R3 

Ed samplers A, B, and C were downwind 5, 10, and 15 meters, D and E were 

crosswind at 15 meters, and F was upwind at 15 meters. We see as distance 

increased for our downwind samplers that absorbance decreased, meaning less 

exposure to smoke was measured as the distance from the plume increased. 

5.6 A side view of a period when the drone mounted sensor (DR OPC) was flying 

above OPC C (12:14:32 PM July 6th, 2023). OPC C is within the plume while the 

drone sensor was above the plume, which is shown by a high concentration 

measured from OPC C and a much lower concentration measured from the drone 

mounted sensor. 

5.7 The smoke plume as seen from above by the drone processed into 4 different 

intensity levels. The edges of the smoke plume near to the source can be seen to be 

level 2 with the center being level 4. As the distance from the source increased, the 

center of the plume intensity level tapered off from level 3 (at OPCs A and B) to 

level 2 (at OPC C), to level 1 before no longer being detected. At the furthest extent 

of the plume the center was only intensity level 2 with an outside edge of level 1. 

5.8 4 panels of processed smoke images as seen from above along with the associated optical 

particle counter concentration measurements (cm-3). In the top left panel, the edge of the 

smoke plume intersected with OPCs A and B. In the top right and bottom left panel, the 

smoke plume engulfed all 3 OPCs with higher intensity levels on OPCs A and B. In the 
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bottom right panel, the plume drifted away from OPC A. As the plume ascended, OPC B 

was fully covered, and OPC C was partially covered. 

5.9 2 sets of processed smoke images as seen from above along with the associated optical 

particle counter concentration measurements (cm-3) overlaid on the left image. In the top 

left and bottom left the smoke plume was divided into smoke intensity bins based on the 

relative red intensity of the RGB readout of each pixel. In the top right and bottom right 

panel, the smoke plume was measured by average saturation and the value of each 

measured pixel was displayed as a continuous color gradient. 

5.10 The processed side (top) and top-down (bottom) view of the smoke plume. Processed 

images had the plume identified via a trained Detectron2 AI and the plume density was 

color mapped using the averaged saturation and value read at each pixel within the plume. 

5.11 The training and validation predicted vs actual plots for the particle concentrations 

measured by the OPC and predicted by the neural model trained with smoke intensity data. 

These results had an R-Squared value of 0.612 for the training data and 0.559 for the 

validation data. 

5.12 The training and validation predicted vs actual plots for the particle concentrations 

measured by the OPC and predicted by the neural model trained with the averaged 

saturation and value measurements of pixel readings taken near the OPC as seen by 

the drone video. The empirical prediction equation produced a model that had an R-

Squared of 0.532 and a validation prediction R-Squared value of 0.382. 
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List of Tables 
2.1  Details on AirDROPS sampling missions at GLSM and Lake Erie. AirDROPS was 

used to collect and characterize particles over two HABs. The AirDROPS consisted 

of an impinging device and an optical particle counter mounted above a large 

commercial quadcopter. Twenty flights were conducted 10 m above water level 

(AWL) at GLSM, and five flights were conducted 10 m AWL at Lake Erie. One 

sensor calibration mission (flight 20) was conducted over land adjacent to a sonic 

anemometer mounted on the top of a flagpole 15 m above ground level (AGL). 

2.2  Microcystins and their quantifier and qualifier ions set in LC-MS/MS methods. 

3.1  Shows the date, time, location, and lake/ocean designator for each sampling period. 

3.2  Shows the date, time, maximum altitude, location, and onshore or offshore 

designation of profile. 

4.1  The four-tiered red tide respiratory irritation levels reported in the Beach Condi- 

tions Reporting System, and the corresponding two-tiered risk level defined for this 

study. 

4.2  Estimated values of the Hawkes parameters for each of the beaches considered, 

listed north to south. Units of λ0, α, and β are inverse days, d−1. The bottom rows 

shows the average parameter value (across all beaches) along with the standard 

deviation. 

4.3  For each beach, the percent of days for which the respiratory irritation risk was 

correctly forecast by each model during the dates shown is reported as the accuracy. 
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Also given are the false negative rate (also called the miss rate) and the false 

positive rate. 

5.1 Sampler name, start time, stop time, distance, direction from the smoke source, and 

number of smoke emitters released during sampling period is shown for the 

sampling equipment during the July 6, 2023, smoke release experiments. Ed refers 

to the high volume filter samplers. IMP refers to the ground-based sensors 

containing OPC and weather sensors. DR V refers to the drone collecting video 

data. DR OPC refers to the drone with the mounted OPC. 

5.2 Training and validation data for the model predicting smoke intensity level using 

particle concentrations as inputs. 
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Chapter 1. Introduction  

1.1 – Background and Motivation 

Harmful algal blooms (HABs) are characterized by the proliferation of toxin-producing 

cyanobacteria and dinoflagellates, commonly referred to as blue-green algae (Anderson et 

al., 2002). HABs cause adverse effects on human health and wildlife (Backer et al., 2015) 

through degradation of water and air quality (Kirkpatrick et al., 2011; Birbeck et al., 2019b). 

HABs not only disrupt the ecological balance of aquatic habitats by outcompeting other 

organisms for resources and altering food webs, but they also produce a variety of toxins 

(Backer et al., 2015; Hanlon et al., 2022). Microcystis is a genus of cyanobacteria commonly 

found in lakes and reservoirs, often producing hepatotoxins which can be damaging to the 

liver (Birbeck et al., 2019b). However, other genera of cyanobacteria produce different types 

of toxins including neurotoxins (Sutherland, 2021). In lakes, nutrient availability limits 

growth of these HABs (Anderson et al., 2002; Welch, 2009). The frequency of HAB events 

appears to be increasing with climate change and extreme weather (Plaas and Paerl, 2021). 

Recent studies have shown that human activity and climate change may be exacerbating 

these blooms through an increase in agriculture and urbanization, which increases nutrient 

pollution and leads to more frequent and severe HABs (Dees et al., 2017; Wells et al., 2020).   

Ocean systems can also experience HABs which negatively impact human and marine health 

(Fleming et al., 2005a; Kirkpatrick et al., 2011). One such ocean HAB, often referred to as 

Red Tide, is caused by the dinoflagellate Karenia brevis (Zohdi and Abbaspour, 2019). Red 

Tide is prevalent in the Gulf of Mexico and other coastal regions and is characterized by the 
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production of potent neurotoxins known as brevetoxins (Pierce et al., 2005). Marine HABs, 

such as red tides, release aerosolized toxins, leading to respiratory problems and skin 

irritation in exposed individuals (Fleming et al., 2005a; Pierce et al., 2005). However, 

advances in technology, such as robotic sampling systems and drones, offer innovative 

solutions for real-time monitoring and data collection, aiding in the formulation of effective 

management strategies (González-Rocha et al., 2022; Hanlon et al., 2022). 

Sea spray aerosol (SSA) is the interface between the ocean and the atmosphere. SSA 

generation occurs through bubble bursting, wave breaking, and wind-driven processes, 

releasing particles and organic compounds into the atmosphere (de Leeuw et al., 2011; 

Cunliffe et al., 2013). These aerosols exhibit significant variability, influenced by factors 

such as wind speed, and biogeochemical processes within the ocean (O’Dowd and de Leeuw, 

2007; Harb and Foroutan, 2019). SSA composition is highly heterogeneous, comprising 

inorganic salts, organic matter, and biological components derived from marine sources 

(Meskhidze et al., 2013; Quinn et al., 2015).  

Lake spray aerosol (LSA) represents aerosols originating from freshwater bodies, offering 

insights into the interactions between land and air interfaces. LSA formation primarily occurs 

through wave breaking, wind shear, and turbulence over freshwater surfaces, leading to the 

ejection of water droplets and particles into the atmosphere (May et al., 2016; Harb and 

Foroutan, 2022). These aerosols chemical and physical characteristics, influenced by the 

composition and biogeochemistry of the underlying lake ecosystem are different than that of 

SSA (May et al., 2018a; Olson et al., 2020). Compared to sea spray aerosols, research on 

LSA remains relatively limited, requiring further investigation to better understand the 

formation mechanisms, and chemical composition. By utilizing drone based sampling 
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platforms, aerosols can be collected and measured directly at lake and sea surface as well as 

higher above the surface and on shore (Powers et al., 2018; Hanlon et al., 2022). 

Utilizing advanced statistical techniques and machine learning algorithms, researchers are 

able to identify patterns and make informed predictions based on empirical data, such as 

detecting smoke presence in images or tracking aerosol movement with sensor 

measurements. (Ho and Kuo, 2009; Jones and Sall, 2011; Schmale and Ross, 2015). 

Prediction modeling facilitates the integration of multiple variables and factors, allowing for 

comprehensive analyses and enhanced predictive accuracy. The utilization of machine 

learning algorithms, such as neural networks, has enabled the identification of environmental 

drivers and development of robust forecasting models (Shin et al., 2022). By leveraging 

historical data on HAB occurrences, water quality parameters, meteorological conditions, 

and ecological factors, these models can provide probabilistic forecasts of HAB 

development, bloom intensity, and spatial extent, aiding in early warning and decision-

making processes by leveraging weather forecasts with determined weather impact on HAB 

aerosol behavior. (Stumpf, 2001; Ahn and Shanmugam, 2006; Bulot et al., 2019). 

By taking empirical data and integrating it with modeling software, it is possible to predict 

what areas will be most impacted by HABs (Maguire et al., 2016; Ralston and Moore, 2020). 

Utilizing multiple monitoring locations and types allows for more accurate HAB predictions 

(Fang et al., 2019), with larger data sets allowing for more robust and accurate predictions 

of HAB conditions (Ai et al., 2023). Despite advancements in predicting HABs, challenges 

such as data availability and the dynamic nature of HABs remain areas of ongoing research 

(Deng et al., 2018). Through the use of prediction equations and models of HAB impact, 

there is promise for enhancing preparedness and response strategies, safeguarding 



4  

 
 

ecosystems, and human well-being from the detrimental effects of this ever-increasing 

problem. 

Traditional aerosol sampling has been performed with ground level sensing devices and has 

been limited to samples of aerosols within a few meters of the ground or structures (Belyaev 

and Levin, 1974). By adding drone particle tracking, the study aerosol dynamics and 

behavior at finer scales than traditional ground-based or satellite observations is possible 

(Gray et al., 2018). By flying at different altitudes and utilizing advanced sensors, drones 

can capture detailed information on particle size distributions, vertical profiles, and transport 

pathways (Bansod et al., 2017; González-Rocha et al., 2023). This enhanced spatial and 

temporal resolution allows for more accurate modeling of aerosol dispersion and forecasting 

of air quality conditions, thereby supporting informed decision-making and public health 

interventions (Pochwała et al., 2020). 

Significant advancements have been made in smoke tracking techniques, facilitated by 

remote sensing technologies, atmospheric modeling, and data assimilation methods (Ho and 

Kuo, 2009; Zhao et al., 2012). Remote sensing platforms, such as drones, enable the 

detection and monitoring of smoke plumes over large areas, offering valuable information 

for wildfire management agencies (McClure et al., 2023). By combining visual remote 

sensing with drone technology, including lightweight sensors, the particle composition of a 

smoke plume can be determined (Chen and Huang, 2019). The ability to compare the 

composition of a smoke plume and particle data is particularly important for use in tracking 

particles of interest that are not visible. Pollen movement across large distances can be 

modeled through land use and pollen emission estimates (Prank et al., 2013) and ground 

sensors as part of the national pollen monitoring network (AAAAI, 2021), however, with 
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drone-based sensors pollen can be measured directly in the atmosphere (Bieber et al., 2020). 

Current video and image smoke tracking merely captures the size and movement of visible 

smoke plumes (Ho and Kuo, 2009; Gupta et al., 2021). By utilizing data collected from drone 

sensors alongside visual smoke tracking data the predictions of particle movement can be 

further improved. The combination of particle sensors and video smoke tracking allows for 

the training of prediction models which can determine the particle concentrations from just 

collected video of the smoke plume. The opposite is also true, where particle concentrations 

collected in an array can determine relative plume intensity and a visualization of the plume 

dynamics can be created for aerosols that may not be visible, such as pollen, pathogens, or 

HAB cells (Schmale and Ross, 2015).  

 

1.2 Objectives 

Overall Goal: The goal of this research is to characterize the influence of weather 

phenomenon such as wind speed, wind direction, and temperature on 

measured aerosol levels above and around HABs. This will be done by taking 

measurements using ground and drone mounted sensors along with water and 

air sampling techniques.  

Objective 1. Explore associations between measured weather conditions and the particle 

counts measured above and beside active HABs and HAB sites. 

Question:  What conditions lead to the highest and lowest levels of particle counts in the 

sampling are?  
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Hypothesis:  Higher wind speeds and lower temperatures are associated with higher 

particle counts. 

Objective 2.  Create a model to predict concentrations of particles associated with HABs 

in the air at downwind sites. 

Question:  What is the relative risk of aerosolized toxins at downwind sites? 

Hypothesis:  The risk of exposure downwind to aerosolized toxins is associated with wind 

and temperature. 

Objective 3. Create a model to predict what location will have high levels of HAB 

aerosols. 

Question:  What measurable factors most influence a location to be associated with an 

active HAB? 

Hypothesis:  Water color and wind direction will be most associated with higher levels of 

HAB irritation. 

Objective 4.  Combine visual smoke tracking with weather and particle measurements to 

improve particle behavior predictions. 

Question:  Do smoke particles behave in a predictable way based on measured particle 

concentrations and weather conditions and can different sensing devices be 

utilized to inform behavior of visible and invisible aerosol plume behavior? 

Hypothesis:  By utilizing multiple particle and weather sensors alongside video monitoring 

of smoke movement we will see associations between the movement of the 

smoke plume and the sensor measurements. 
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1.3 Organization of Thesis 
The objectives of this work will be addressed in the following chapters: 

1. Drone-Based Particle Monitoring Above Two Harmful Algal Blooms (HABs) in the 

USA 

2. Monitoring wind and particle concentration near freshwater and marine harmful 

algal blooms (HABs) 

3. Beach-level 24-hour forecasts of Florida red tide-induced respiratory irritation 

4. Predicting concentrations of colored smoke using drone imagery and a series of 

fixed and mobile sensors 
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Dr. David G. Schmale, III served as co-advisor for this work. Dr. Schmale provided 

direction on experimental design and writing for all work presented in these manuscripts. 

He participated in all research activities and lead the sampling missions for data analyzed 

in Chapters 2 and 3. He is listed as the corresponding author for Chapters 2, 3, and 5.  

 

Dr. Shane Ross served as a co-advisor for this work. Dr. Ross provided guidance with 

Chapters 2, 3, and 5 as well as being the lead author for Chapter 4. 

 

Dr. Hosein Foroutan served as a committee member and provided guidance throughout the 

completion of this dissertation. 

 

Dr. Hession Cully served as a committee member and instructed Landon Bilyeu in graduate 

level coursework regarding hydrology. 

 

Dr. González-Rocha provided experimental analysis advice as well as data and analysis for 

collected drone measurements from Chapter 3. He also collected data as the drone operator 

for results outlined in Chapter 3. 



8  

 
 

 

Regina Hanlon contributed to experimental design, planning, and writing for experiments 

outlined in Chapters 2, 3, and 5. She performed the flow cytometry analysis in Chapter 2. 

She collected data alongside Dr. González-Rocha with ground sampling devices used in 

Chapter 3. 

  



9  

 
 

Chapter 2. Drone-Based Particle Monitoring Above 

Two Harmful Algal Blooms (HABs) in the USA 
Landon Bilyeu, Bryan Bloomfield, Regina Hanlon, Javier González-Rocha, Stephen J. 

Jacquemin, Andrew P. Ault, Johnna A. Birbeck, Judy A. Westrick, Hosein Foroutan, Shane 

D. Ross, Craig W. Powers, and David G. Schmale III 

 

Submitted: May 2022  

To: Environmental Science: Atmospheres  

Status: Accepted September 2022  

 

  



10  

 
 

2.1 Abstract 

Little is known about the transport and fate of aerosolized particles associated with harmful 

algal blooms (HABs). An Airborne DROne Particle-monitoring System (AirDROPS) was 

developed and used to monitor, collect, and characterize airborne particles over two HABs 

in Grand Lake St Marys (GLSM) and Lake Erie (LE), Ohio USA in August 2019.  The 

AirDROPS consisted of an impinging device (ID) and an optical particle counter (OPC) 

mounted on a large commercial quadcopter (DJI Inspire 2). The sensor package was 

mounted above the airframe to limit the effects of propeller downwash that can corrupt 

measurements taken below the drone.  Twenty flights were conducted 10 m above water 

level (AWL) at GLSM, and five flights were conducted 10 m AWL at LE. This sampling 

height was chosen to minimize the effects of propwash on aerosolization from the lake 

surface. One  intercomparison flight was conducted at GLSM over land adjacent to a sonic 

anemometer mounted on the top of a flagpole 15 m above ground level (AGL). Particle 

counts generally decreased from morning to afternoon flights, ranging from > 4000 in the 

morning to < 1000 later in the day. Decreased particle counts were associated with an 

increase in windspeed that corresponded with time of day, ranging from > 4000 below 4 

m/s to < 2500 above 4 m/s. Flow cytometry was used to image particles trapped in a liquid 

impinger onboard the AirDROPS. Sixty percent (15/25) of the impinger samples contained 

at least one biotic (fluorescent) object. Impinger samples were also analyzed for a suite of 

potential cyanotoxins using liquid chromatography–mass spectrometry (LC-MS/MS), but 

no cyanotoxins were detected in any of these air samples (water samples collected during a 

similar time contained greater than 20 µg/L microcystins). Additional work is needed to 

understand the environmental factors associated with the potential aerosolization and 

transport of cyanobacterial cells and toxins in aquatic environments.  
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2.2 Introduction 

Harmful algal blooms (HABs), caused mostly by toxin-producing cyanobacteria, occur 

naturally in freshwater systems.(Backer et al., 2015; Watson et al., 2015; Schmale et al., 

2019) HABs form as a result of lake conditions favorable to cyanobacterial growth, such as 

high levels of phosphorus and warmer temperatures.(Anderson et al., 2002) These 

conditions can occur in areas with high agricultural runoff and are a particular risk to 

shallow waters. HABs are often associated with high levels of cyanotoxins that pose a 

significant health threat to humans and domestic animals.(Graham et al., 2010; Bertani et 

al., 2016) The exposure of HAB associated aerosols has been shown to pose health threats 

in a drosophila model.(Hu et al., 2020a) Furthermore, HABs appear to be increasing in 

freshwater bodies around the world.(Anderson et al., 2002; Wells et al., 2020) 

Research is needed to mitigate HABs, including the development of new low-cost 

and turn-key technologies to capture, detect, and quantify HAB cells and toxins in water 

and air.(Anderson et al., 2002; Schmale et al., 2019) Water samples suspected to contain 

HABs are usually collected by hand from crewed boats and shipped to off-site laboratories 

for cyanotoxin analyses. Detailed cyanotoxin analyses are usually conducted using liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS), but the high costs 

of these instruments preclude their widespread use. Commercially available enzyme linked 

immunosorbent assays (ELISAs) are common for some cyanotoxins such as microcystins 

(MCs), employing either monoclonal or polyclonal antibodies.(Graham et al., 2010) New 

low-cost technologies with quick turn-around times are needed to understand threats, 

manage risks, and mitigate incidents associated with HABs. 
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Grand Lake Saint Marys (GLSM) is a natural HAB laboratory; the lake has 

experienced a recurring HAB since 2010.(Jacquemin et al., 2018) LE has also experienced 

several significant HABs in recent years. A HAB in 2014 near the water treatment plant 

intake for Toledo, OH led to non-potable water for days.(Steffen et al., 2014) HABs on LE 

are often associated with the southern and western portions of the lake, likely stemming 

from increased nutrient input from the Maumee River.(Boyer, 2008) Similar to GLSM, LE 

has been experiencing HABs for at least the past few decades, due in large part to the 

highly agricultural watershed and resulting nutrient rich runoff coupled with the shallow 

depth and bathymetry of the lake.(Brittain et al., 2000)  

Lakes with HABs have been shown to produce lake spray aerosols (LSAs) through 

the breaking of waves and the bursting of bubbles.(May et al., 2016, 2018b) These 

processes may release HAB-associated particles into the air above the lake surface.(Pietsch 

et al., 2018) Red tides in the ocean are known to produce aerosolized toxins known as 

brevetoxins that may irritate the eyes and lungs of humans (Fleming et al., 2005a). Though 

red tides have been the focus of a considerable amount of research in the past decade 

(Pierce et al., 2005), relatively little is known about the airborne transport and fate of 

freshwater HABs and their associated toxins. This information is critical for health 

advisories issued via water quality experts, and for the communities of people that live on 

or around contaminated bodies of water.(Carmichael and Boyer, 2016)  

A number of different techniques and approaches have been used to study the 

aerosolization and transport of microorganisms from aquatic environments. May et al. 

(2016)(May et al., 2016) developed a chamber to study LSA generation under controlled 

environmental conditions. Pietsch et al. (2018)(Pietsch et al., 2018) used a thin tank to 
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study wind-induced aerosolization of the bacterium Pseudomonas syringae. Harb et al. 

(2019)(Harb and Foroutan, 2019) used a chamber to study the potential impact of salinity 

on the aerosolization of microorganisms from aquatic environments. Powers et al.(Powers 

et al., 2018) developed an extensive sampling tower for an uncrewed surface vehicle 

(USV) to collect microorganisms and monitor particle sizes in the atmosphere above a salt 

pond in Falmouth, MA, USA and a freshwater lake in Dublin, VA, USA. The bioaerosol-

sampling system featured in that work included a series of 3D-printed impingers, two 

different optical particle counters, and a weather station. A small, uncrewed aircraft system 

(sUAS; a fixed-wing drone) was used in a coordinated effort with the USV to collect 

microorganisms 50 m above the surface of the water. Samples from the USV and sUAS 

were cultured on selective media to estimate concentrations of culturable microorganisms. 

In this manuscript, we extend these prior efforts to the development and use of a unique 

Airborne DROne Particle-monitoring System (AirDROPS) to collect and characterize 

aerosols directly over HABs in two freshwater lakes. The AirDROPS consisted of low-cost 

and lightweight sensors, including an impinging device (ID) and an optical particle counter 

(OPC) mounted above a large commercial quadcopter (DJI Inspire 2). The OPC used on 

the AirDROPS can characterize particles up to 10 μm, which is above the size range of 

cells of Microcystis which have been reported to be 1-7 μm.(May et al., 2018b)  Laboratory 

calibration experiments were conducted to assess the reliability of the OPCs after a period 

of use.(Bulot et al., 2019; Giordano et al., 2021) We hypothesized that particle size 

distributions above two freshwater HABs would be associated with windspeed, wind 

direction, and temperature. The specific objectives of our work were to: (1) design an 

automated drone-based sampler to monitor particle sizes in the atmosphere and collect 
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HAB cells and toxins, (2) use the drone-based sampler to monitor the distribution of 

particles in the atmosphere directly above two freshwater HABs, and (3) observe potential 

associations of wind direction, windspeed, and temperature with particle counts from the 

drone-based sampler. 

 

2.3 Materials & methods 

2.3.1 Study sites 

GLSM  is an artificial lake in western Ohio with a surface area of 54.6 square kilometers 

and average depth of about 2 m.(Jacquemin et al., 2018) In the GLSM watershed, over 

90% of the land use is row crops or pastureland which leads to a high amount of nutrient 

pollution into the lake.(Hoorman et al., 2008) The shallow lake warms to between 20 and 

30 °C in the summer months.(Steffen et al., 2014) The warmer waters and higher nutrient 

load in the lake allow the cyanobacteria to outcompete other algae in the lake, creating a 

bloom of toxin producing cyanobacteria. Samples were collected over five consecutive 

days between 5-9 August 2019 at GLSM and LE in Ohio, USA (LE). Drone sampling 

missions were conducted 10 m above the water surface at coordinates 40.54, -84.51 and 

41.70, -83.46 (Table 1) in order to obtain unique measurements of collected aerosols and 

particle counts at heights above the water surface that could not be reached by boat. Wind 

speed and direction were collected by an anemometer attached to a flagpole at coordinates 

40.54, -84.51. Due to the lack of an unobstructed space to place the stationary wind sensor 

at LE (there were tall trees at the sampling location that obstructed the sampling domain), 

wind data were collected through a separate drone flown simultaneously 10 m above the 

water. Wind data from these flights were gathered using previously published methods 
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where the motion of the drone was used to infer windspeed and wind direction .(González-

Rocha et al., 2019, 2020)  One of the flights at GLSM was also used for comparison with a 

concurrent separate drone flight measuring wind conditions and was flown adjacent to a 

sonic anemometer mounted on the top of a 15 m flagpole (Flight 20, Table 1). 

Table 1. Details on AirDROPS sampling missions at GLSM and LE. AirDROPS was used to collect and 

characterize particles over two HABs. The AirDROPS consisted of an impinging device and an optical 

particle counter mounted above a large commercial quadcopter. Twenty flights were conducted 10 m above 

water level (AWL) at GLSM, and five flights were conducted 10 m AWL at LE. One sensor intercomparison 

mission (flight 20) was conducted over land adjacent to a sonic anemometer mounted on the top of a flagpole 

15 m above ground level (AGL). 

Flight 

# Lake Mission Date 

Start 

time 

(ET) 

Stop 

time 

(ET) 

Sample 

time 

(min.) 

Height 

above 

water 

(m) 

GPS of sampling 

location 

 

 

OPC 

Count 

per mL 

 

 

Red 

Channel 

Obj/mL 

1 GLSM 

Sample above lake 

surface 

5-Aug-

19 

8:04 

AM 

8:17 

AM 13 10 

40.544873, -

84.510843 45.3 0.0 

2 GLSM 

Sample above lake 

surface 

5-Aug-

19 

9:07 

AM 

9:17 

AM 10 10 

40.544873, -

84.510843 51.1 413.5 

3 GLSM 

Sample above lake 

surface 

5-Aug-

19 

10:09 

AM 

10:19 

AM 10 10 

40.544873, -

84.510843 29.4 0.0 

4 GLSM 

Sample above lake 

surface 

5-Aug-

19 

11:06 

AM 

11:16 

AM 10 10 

40.544873, -

84.510843 21.2 0.0 

5 GLSM 

Sample above lake 

surface 

5-Aug-

19 

12:03 

PM 

12:13 

PM 10 10 

40.544873, -

84.510843 22.1 0.0 

6 GLSM 

Sample above lake 

surface 

5-Aug-

19 

1:05 

PM 

1:15 

PM 10 10 

40.544873, -

84.510843 22.1 0.0 

7 GLSM 

Sample above lake 

surface 

5-Aug-

19 

2:07 

PM 

2:17 

PM 10 10 

40.544873, -

84.510843 16.3 871.4 

8 GLSM 

Sample above lake 

surface 

5-Aug-

19 

3:03 

PM 

3:14 

PM 11 10 

40.544873, -

84.510843 11.2 461.2 

9 GLSM 

Sample above lake 

surface 

6-Aug-

19 

8:10 

AM 

8:20 

AM 10 10 

40.544873, -

84.510843 54.5 2535.1 

10 GLSM 

Sample above lake 

surface 

6-Aug-

19 

9:06 

AM 

9:16 

AM 10 10 

40.544873, -

84.510843 36.4 3984.5 

11 GLSM 

Sample above lake 

surface 

6-Aug-

19 

10:04 

AM 

10:14 

AM 10 10 

40.544873, -

84.510843 18.9 nd 

12 GLSM 

Sample above lake 

surface 

6-Aug-

19 

10:36 

AM 

10:46 

AM 10 10 

40.544873, -

84.510843 19.1 0.0 

13 GLSM 

Sample above lake 

surface 

6-Aug-

19 

11:07 

AM 

11:17 

AM 10 10 

40.544873, -

84.510843 23.1 0.0 
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14 GLSM 

Sample above lake 

surface 

6-Aug-

19 

11:35 

AM 

11:42 

AM 7 10 

40.544873, -

84.510843 17.3 0.0 

15 GLSM 

Sample above lake 

surface 

6-Aug-

19 

12:43 

PM 

12:53 

PM 10 10 

40.544873, -

84.510843 11.5 0.0 

16 GLSM 

Sample above lake 

surface 

6-Aug-

19 

1:06 

PM 

1:16 

PM 10 10 

40.544873, -

84.510843 35.7 0.0 

17 GLSM 

Sample above lake 

surface 

6-Aug-

19 

1:34 

PM 

1:44 

PM 10 10 

40.544873, -

84.510843 0.0 2030.8 

18 GLSM 

Sample above lake 

surface 

6-Aug-

19 

2:06 

PM 

2:16 

PM 10 10 

40.544873, -

84.510843 0.0 853.6 

19 GLSM 

Sample above lake 

surface 

6-Aug-

19 

2:37 

PM 

2:47 

PM 10 10 

40.544873, -

84.510843 0.0 2518.2 

20 GLSM Sensor calibration 

7-Aug-

19 

8:18 

AM 

8:28 

AM 10 10 

40.544074, -

84.508220 0.0 831.1 

21 LE 

Sample above lake 

surface 

8-Aug-

19 

11:36 

AM 

11:46 

AM 10 10 

41.702472, -

83.463598 5.54 2737.2 

22 LE 

Sample above lake 

surface 

8-Aug-

19 

12:07 

PM 

12:17 

PM 10 10 

41.702472, -

83.463598 5.68 5817.6 

23 LE 

Sample above lake 

surface 

8-Aug-

19 

1:07 

PM 

1:17 

PM 10 10 

41.702472, -

83.463598 5.37 2509.8 

24 LE 

Sample above lake 

surface 

8-Aug-

19 

1:37 

PM 

1:47 

PM 10 10 

41.702472, -

83.463598 5.38 2578.4 

25 LE 

Sample above lake 

surface 

8-Aug-

19 

2:09 

PM 

2:14 

PM 5 10 

41.702472, -

83.463598 5.21 2535.1 

 

 

 

 

2.3.2 Airborne Drone Particle-monitoring System   

The AirDROPS was designed and deployed for sampling bioaerosols and monitoring 

particle size distributions. The sampler was constructed using a 38.5 mm diameter by 290 

mm length PolyPropylene tube and Polylactic Acid 3D printer components (Figure 1A). 

The sampler was mounted on top of the drone airframe (Figure 1B) to limit the effects of 

propeller downwash that can corrupt measurements taken below the drone.(de Boisblanc et 

al., 2014; Nolan et al., 2018)  The sampler was powered via a single 3.7V 3000mAH 15A 
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Lithium-Ion battery (Samsung 30Q INR 18650) that was changed out with every flight. An 

impinger was designed using a stainless-steel tube and PolyCarbonate 3D printed 

components to allow for high temperature sterilization by autoclave and field disinfection 

using ethanol. The impinger was based on a design previously described by Powers et al., 

2018(Powers et al., 2018) adapted for use with a 15 mL polypropylene sterile conical 

centrifuge tube (CLS430791, Corning, Millipore Sigma). An aliquot of 2.5 mL of sterile 

water was added to the 15 mL conical tube immediately prior to each sampling mission. 

Two micro vacuum pumps (PN: SC3101PM, 21 Hualun Sci & Tech Pk 1st Ind Zn 

Fenghuang Village, Fuyong Town, Shenzhen, Guangdong, China) were used in parallel to 

supply a flow rate of 0.6 L/min to the impinger. This flow rate was determined using an 

FTS Flow Calibrator from ARA Instruments (Eugene, OR, USA), and was optimized to 

ensure that the impinging fluid was not evacuated from the tube during the sampling 

mission (i.e., higher flow rates caused water to escape the tube into the vacuum pump).  

The collection efficiency of the impinger has been reported previously by Powers et al. 

(Powers et al., 2018) to be 75% for 1 μm polysterene latex beads and 99% for 3 μm 

polysterene latex beads. The inlet to the impinger was located 330 mm above the horizontal 

plane of the drone propellers to limit fouling of the sensor due to propwash (Figure 1B). 

An optical particle counter (PMS7003, Plantower, Shunyi District, Beijing, China) was 

used to record six particle size bins, each greater than 0.3, 0.5, 1.0, 2.5, 5.0, and 10.0 μm. 

PM1, PM2.5, and PM10 numbers were calculated internally by the PMS7003. The inlet to 

PMS7003 sensor was located 312 mm above the horizontal plane of the drone propellers 

(Figure 1B). An environmental sensor (BME280, Bosch Sensortec GmbH, Gerhard-

Kindler-Strasse 9, 72770 Reutlingen Germany) was used to measure ambient temperature, 
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relative humidity, and barometric pressure. The BME280 was located 132 mm above the 

horizontal plane of the drone propellers. A GPS module (GPS-13740, SparkFun 

Electronics, 6333 Dry Creek Parkway, Niwot, CO 80503) was used for location and time 

data. All available data was recorded by the ARM based microcontroller to a secure digital 

(SD) card at 1Hz. The combined weight of the AirDROP including a battery and a 15 mL 

conical tube with 2.5 mL of sterile water was 587 g. This is below the safe limit operations 

of the Inspire 2 platform payload, which the manufacturer has specified as no greater than 

810 g.(Inspire 2 - Product Information - DJI, n.d.) With the AirDROPS installed, the 

Inspire 2 platform has a reasonable (safe) flight time of about 15 minutes. Our sampling 

missions were designed with this limit in mind (10 minutes), providing enough time for 

takeoff, transit to and from the sampling location, and return to home for landing (about 

two minutes, given the location of our takeoff and landing spot). 
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Figure 1. (A) Engineering model of the AirDROPS package. (B) The AirDROPS attached to the DJI Inspire 

2 platform. (C) Intercomparison flight of the AirDROPS adjacent to the sonic anemometer mounted on the 

flagpole. (D) Sampling mission at GLMS, 10 m above the surface of the water. (E) Drone image and aerial 

view of the sampling location at LE  to the right of the point in the image. 

 

2.3.3 Flight operations 

For each sampling mission, the AirDROPS was flown into position, and held in 

‘Positioning mode’ at a constant altitude of 10 m above the lake surface (Figure 1D). This 

height was chosen to reduce the impact of downwash on the lake surface as well as to 

measure aerosol levels higher above the HAB source than had been done previously using 
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watercraft. The sensor package was powered on using a photoelectric switch mounted over 

the left rear green LED light on the Inspire 2. The lights were powered on in the DJIGO4 

app, starting the sensor package over water once the drone was in the correct position. The 

sensor package remained on for a period of 10 min. After 10 min, the sensor package was 

powered off using the photoelectric sensor, and the drone was returned home for landing.  

 

2.3.4 Flow cytometry of impinger samples collected 10 m above the HABs 

The concentration of impinged particles from the atmosphere above freshwater lake sites 

was determined with an Imaging Cytometer (Amnis ImageStream MarkII). The impinged 

aerosols were counted as obj/mL at 60X magnification in both the brightfield (BF) (457/45 

nm bandpass filter) and red channels (642 nm excitation and 702/86 nm emission 

wavelength) (Figure 2). Phycocyanins are the light harvesting pigments found in 

cyanobacteria and these pigments are optimally excited in the red range with an emission 

spectrum that can be captured between 630 nm and 800 nm. Samples were stored at -20°C, 

thawed, and equilibrated at room temperature, prior to being run. One mL of the impinged 

liquid sample was spun twice at 3,000 x gravity for five minutes. Two aliquots of 42 µL 

were immediately recovered from the liquid near the bottom of the tube, with care to avoid 

any debris on the tube bottom. Molecular biology grade water was filtered with a 0.2 µm 

filter and used as a blank in the machine before running samples. 
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Figure 2. Selected images from flow cytometry analyses of impinger samples from the AirDROPS. (A) 

Objects from an impinger sample collected above GLSM showing brightfield, red filter, and combination of 

the two. (B) Objects from an impinger sample collected above LE showing brightfield, red filter, and 

combination of the two. (C) Objects from a lake water sample from LE showing brightfield, red filter, and 

combination of the two. 

 

Due to the predicted low number of putative captured biotic aerosols, a 3-min run 

time was standardized for each impinged sample. In a previous study with natural and 
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simulated rain, samples were run for three min to obtain obj/mL outputs.(Powers et al., 

2018) These authors determined that 3-min sample runs showed similar size distributions 

relative to samples that reached 1000 obj/mL in less than three min, and the background 

level of bacteria in the nucleic acid staining dye in sterile control water was 297 ± 82 

DNA-containing particles per 10 μL (n=3). We did not use a nucleic acid staining dye in 

this study. Instead, the total obj/mL data for biotic particles was captured in the red channel 

to eliminate abiotic debris that might give rise to a false count in the BF channel alone. The 

objects counted in the red channel were considered to be biotic in origin, regardless of 

fluorescence level. Sample run focusing was achieved with SpeedBead® reagent beads 

(Amnis Cat. #400040) during data acquisition. The beads were removed by gating before 

object counts were generated for each run. To obtain total aerosolized particles captured, 

the BF channel data was corrected by subtraction of particles within the SpeedBead capture 

range. These counts were sorted by the size of the objects into bins of 0.13 - 1.13, 1.13 - 

1.60, 1.60 - 1.95, 1.95 - 2.76, 2.76 - 3.91, 3.91 - 5.64, 5.64 - 6.91, 6.91 - 7.98, and 7.98 - 

8.92 μm radius objects. The radius was calculated using the total size of the objects and 

assuming a circular (spherical) shape.  

To calculate the total number of aerosolized particles collected during each 

impinger collection, the average of the total BF obj/mL for the zero red channel runs were 

assigned to a discrete size bin. The mean of this total obj/mL (for each size bin) was 

subtracted from the corresponding total BF obj/mL (for each size bin) for each run that 

contained a positive fluorescent object in the red channel. By subtracting the average 

particle count data for samples with zero objects in the red channel, from those with red 

objects, we were able to normalize by correcting for abiotic debris particle capture. 
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2.3.5 Cyanotoxin analyses using LC-MS/MS 

Toxins from cyanobacteria were detected using LC-MS/MS methods described in Birbeck 

et al. 2019.(Birbeck et al., 2019a) Sample analytes were loaded into a Thermo Scientific 

TSQ Altis™ triple quadrupole mass spectrometer (Thermo Scientific, Waltham, MA, USA) 

with an EQuan MAX Plus™ system and then separated on a Thermo Accucore aQ, 50 × 

2.1 mm, 2.6 µm particle size column. A standard curve was prepared between 0.5-500 

ng/L, with detection limits for MCs and nodularin being between 0.5-10 ng/L. An 

electrospray ionization source was used in positive ion mode. Additional details regarding 

these methods are provided in Hanlon et al. (2022)31 and reference ions are provided in 

Supplementary Table 1.  The TraceFinder™ EFS 4.1 software package was used to ensure 

proper cyanotoxin identification (Supplementary Table 1).  

 

2.3.6 Particle counts 10m above the HABs 

The PMS7003 was used to count particles six particle size bins, each greater than 0.3, 0.5, 

1.0, 2.5, 5.0, and 10.0 µm diameter in 0.1 L of air, and had a sample rate of about 1 Hz. The 

sampling occurred over 10-min intervals in tandem with the drone-based impinger. 

Airborne particle counts were measured according to the times shown in Table 1. The data 

collected was saved to an SD card in comma-separated values (CSV) file format and 

transferred before clearing the SD card to prepare for the next flight. 

 

2.3.7 Ground-based measurements of windspeed and wind direction 

At GLSM, an Atmos 22 sonic anemometer weather station was aligned north with a 

compass and raised on a flagpole to a height of 15 m where it recorded wind speed and 
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direction measurements every 15 s. Data were saved to an SD card and collection was run 

from 8:00 until 16:00 local time, daily. The same ground-based anemometer was also used 

at LE, but trees obstructed this sensor during flight operations so local wind data for the LE 

flights were determined from drone-based measurements of wind.(González-Rocha et al., 

2022) These measurements were taken every second and matched with the time recorded 

on the AirDROPS to align particle count measurements with the wind speed and direction 

calculations. 

 

2.3.8 Drone-based wind velocity measurements  

Drone-based wind velocity measurements were derived from a 3DR Solo quadrotor using 

the model-based wind estimation technique described in (González-Rocha et al, 2019; 

2020).(González-Rocha et al., 2019, 2020) With this method, wind velocity is inferred 

from wind-induced vehicle motion perturbations experienced as the drone sustains 

hovering flight. The general accuracy of this drone-based wind sensing approach has been 

demonstrated through previous experiments where drone, sonic anemometer, and a Sonic 

Detection and Ranging instrument (SoDAR) wind velocity measurements have been 

compared at various heights above ground level.(Nolan et al., 2018; González-Rocha et al., 

2019, 2020)  

 

2.3.9 Optical Particle Counter Calibration Experiments 

The initial OPC calibrations were done according to the procedure outlined in Powers et 

al., 2018.(Powers et al., 2018) The accuracy of the OPC used onboard the AirDROPS was 

assessed in a series of controlled laboratory experiments against an Aerodynamic Particle 
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Sizer (APS, Model 3321, TSI Incorporated, Shoreview Minnesota, USA). Briefly, particles 

of known sizes (1 and 3 microns) were released into a sealed bag and measurements from 

the OPC were compared to the APS. 

 

2.3.10 Data analyses 

Data were saved in CSV files and were trimmed and aligned in Microsoft Excel. Statistical 

analyses were performed with JMP Pro Version 17 software (Cary, North Carolina, USA). 

A model was fit using the JMP neural network to create a prediction equation for GLSM 

which utilized wind speed, wind direction, and temperature to predict the particle count. 

The neural network weighs inputs from a provided dataset to create a prediction equation 

that will estimate a specific output parameter. The model was set up to create three hidden 

node equations that combine into an overall theta equation. The theta equation predicts the 

particle count from the provided weather data. The program adjusts the values in the 

hidden node equations and overall theta equation until it fits the best curve to the 

data.(Gotwalt, 2011; Chen and Chen, 2020) To get the best fit, the model was trained using 

all of the data collected from the sampling periods of August 5th and August 6th, 2019 for 

which we had both weather data and particle counts. The model was trained with a 

randomly selected 2/3rds of the collected data, and utilized the remaining 1/3rd as 

verification for the prediction equation. This resulted in 368 measurements to train the 

model, and another 184 to verify the model. 
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2.4 Results 

2.4.1 Flights 

Twenty-one flights were conducted at GLSM, and five flights were conducted at LE (Table 

1). Twenty-five of the flights were conducted 10 m above the surface of the water (Table 

1). One of the flights at GLSM was used to calibrate the drone sensor package (Flight 20, 

Table 1), and was flown adjacent to a sonic anemometer mounted on the top of a flagpole 

(Figure 1C).  

 

2.4.2 Wind direction and wind speed 

The wind direction was consistent across the lakes and toward the shore-based operations 

for all the sampling missions performed at the two lakes (Figures 1 and 4). For GLSM, the 

sonic anemometer (mounted on the flagpole) recorded wind speeds from 0 – 10 m/s 

(Figure 4), and wind directions ranging from a source of 150 – 300 degrees (Figure 3). At 

GLSM, windspeed increased from morning to afternoon flights (Figure 4). At LE, 

windspeed was variable and ranged from 1 to 12 m/s across all sampling missions (Figure 

4).  
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Figure 3. Wind direction (degrees) over the course of the day. The first two graphs represent August 5 th – 6th, 

2019 at GLSM. The third graph represents August 8th, 2019 at LE. The wind direction was determined using 

a sonic anemometer for August 5th – 7th, 2019, and using GLOS data for August 8th, 2019. 
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Figure 4. Wind speed (m/s) over the course of the day. The first two graphs represent August 5th – 6th, 2019 at 

GLSM. The third graph represents August 8th, 2019 at LE. The wind speed was determined by our sonic 

anemometer for August 5th – 7th, 2019, and using GLOS data for August 8th, 2019. 

 



29  

 
 

2.4.3 Particle counts 

At GLSM, airborne particle counts generally decreased from morning to afternoon flights 

(Figure 5). We observed decreased particle counts at GLSM associated with an increase in 

windspeed from morning to afternoon (Figure 6). For the size bin of 0.3 – 0.5 µm 

diameter, particle counts per 0.1 L of air ranged from about 1,000 (afternoon flights) to 

6,000 (morning flights) per measurement (Figure 5). For the size bin of 0.5 – 1.0 µm 

diameter, particle counts ranged from about 300 (afternoon flights) to 1,600 (morning 

flights) per measurement (Figure 5). For the size bin of 1.0 – 2.5 µm diameter, particle 

counts ranged from about 30 (afternoon flights) to 250 (morning flights) per measurement 

(Figure 5). For larger size bins (2.5 – 5.0, 5.0 – 10.0, and 10.0+ µm), particle counts 

ranged from 0 to 30 per measurement (Figure 5). 
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Figure 5. Airborne particle counts over the course of the day. Data were recorded from a PMS7003 OPC 

onboard the AirDROPS. The first two graphs show flights that occurred August 5th – 6th, 2019 at GLSM 

while hovering 10 m over the water. The third graph depicts the flights on August 8 th, 2019 while hovering 10 

meters over the water at LE. To the right of each graph is the corresponding wind rose which shows wind 

direction and speed for each day. 
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Figure 6. Airborne particle counts recorded from the OPC onboard the AirDROPS, and windspeed from the 

sonic anemometer mounted on a flagpole  and drone-modeled data for LE. The first two graphs show flights 

that occurred August 5th – 6th, 2019 at GLSM while hovering 10 m over the water. The third graph depicts the 

flights on August 8th, 2019 while hovering 10 m over the water at LE.  
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At LE, airborne particle counts were generally lower than GLSM and consistent 

from morning to afternoon flights (Figure 5). At the time LE was not experiencing an algal 

bloom at the severity of the one in GLSM, which could have contributed to the lower 

particle counts. There was no association with particle counts with windspeed (Figure 6). 

For the size bin of 0.3 – 0.5 µm diameter, particle counts ranged from about 400 to 1,150 

per measurement (Figure 5). For the size bin of 0.5 – 1.0 µm diameter, particle counts 

ranged from about 100 to 300 per measurement (Figure 5). For the size bin of 1.0 – 2.5 µm 

diameter, particle counts ranged from about 20 to 35 per measurement (Figure 5). For 

larger size bins (2.5 – 5.0, 5.0 – 10.0, and 10.0+ µm), particle counts ranged from 0 to 2 per 

measurement (Figure 5). 

At GLSM when looking at particle counts over time, we saw the particle count 

decrease significantly as the day went on, dropping to as little as 1/6th the morning particle 

count levels (Figure 5). During our sampling throughout the day. the windspeed increased 

by 2 to 3 times the morning speed (Figure 4), but the wind direction only slightly shifted 

and was always coming from off the lake. At LE, we saw lower average particle counts 

than at GLSM but had similar wind source distribution with over 90 percent of wind source 

direction coming from between 270 and 360 degrees which was off the lake. 

 

2.4.4 Flow cytometry and cyanotoxin analyses of impinger samples 

Selected panels of fluorescent objects present in the impinger samples are shown in Figure 

2. Sixty percent (15/25) of the impinger samples contained at least one biotic (fluorescent) 

object, ranging from 1 to 7 obj/mL (Figure 2). Total biological objects counted in the R1 

channel were sorted by size with the majority falling between 1.95 and 3.91 μm (Figure 7).  
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When comparing total particle counts and object concentrations, no association was 

observed (Table 1). However, despite lower particle counts at LE there were larger 

numbers of objects observed in the impinger (Table 1). Impinger samples were also 

analyzed for a suite of cyanotoxins using LC-MS/MS, but no cyanotoxins were detected in 

any of the samples. Water samples collected during a similar time contained greater than 20 

µg/L microcystins(Hanlon et al., 2022). 

 

Figure 7.  Biological object frequency by size from collected air impinged samples onboard the AirDROPS. 

The graph depicts object counts sorted by size with radius size bins from 1.60 - 1.95, 1.95 - 2.76, 2.76 - 3.91, 

3.91 - 5.64, 5.64 - 6.91, 6.91 - 7.98, and 7.98 - 8.92 μm. The size bins were determined by assuming a 

spherical shape and calculating the radius of an object from its recorded size in the flow cytometer. 

 

2.4.5 Predicting particle counts as a function of environmental parameters  

Particle counts > 0.3 µm from August 5 were observed as a function of wind speed, wind 

direction, and temperature (Figure 8). Figure 8 shows the actual measured particle counts 
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plotted against the model predicted versions which results in an optimized model with a R 

Square of 0.87 and a validation prediction with a R Square of 0.86. The hidden node 

equations and overall prediction equation, are as follows:  

H1 = tanh(.5*(0.2565*Wind_Speed_m_s_ + -0.0022*Wind_Direction_Deg_ + 

0.5451*Temperature_C_ + -14.13));  

 

H2 = tanh(.5*(0.1432*Wind_Speed_m_s_ + 0.0036*Wind_Direction_Deg_ + 

1.269*Temperature_C_ + -34.90)); 

 

H3 = tanh(.5*(-0.3080*Wind_Speed_m_s_ + -0.0092*Wind_Direction_Deg_ + -

0.1154*Temperature_C_ + 6.022)); 

 

THETA1=-3913*H1 + 881.3*H2 + -901.7*H3 + 3583 
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Figure 8. Measured vs predicted particle counts used in the best fit model. The graph on the top panel shows 

the fit of the model on the training set of data, while the graph on the bottom shows the fit of the validation 

set of data. The model was made using the wind speed, temperature, and wind direction through the JMP Pro 

neural network modeling. The model was trained on two days of collected data, and verified on a random 

subset of the collected data that was not used to train the model. 

 

This model based on a neural network allowed for a prediction of the particle counts in the 

air above the HAB based on weather conditions.  
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2.5 Discussion 

Little is known about the airborne fate and transport of HABs and their associated toxins. 

To address these knowledge gaps, we developed and deployed an airborne drone particle-

monitoring system (AirDROPS) to collect and characterize aerosols directly over HABs in 

two freshwater lakes (GLSM and LE), each with different size and conditions that impact 

aerosolization processes. The AirDROPS consisted of an impinging device and an optical 

particle counter mounted above a large commercial quadcopter. Twenty flights were 

conducted 10 m above water level (AWL) at GLSM, and five flights were conducted 10 m 

AWL at LE. One intercomparison flight was conducted at GLSM over land adjacent to a 

sonic anemometer mounted on the top of a flagpole 15 m above ground level (AGL).  

Though airborne concentrations of particles have been reported over water using uncrewed 

boats,(Powers et al., 2018) to our knowledge, the work described here represents the first 

drone-based measurements of airborne particle counts directly over HABs. 

Airborne particle size distributions varied with increasing windspeed for GLSM. 

Particle counts generally decreased from morning to afternoon flights, and the decreased 

particle counts were associated with an increase in windspeed. In contrast, LE particle 

counts were much lower, and we did not observe significant trends in particle counts with 

respect to wind direction, wind speed, or time of day. Airborne particle concentrations have 

been shown to be associated with windspeed and wind direction above a lake 

surface.(Powers et al., 2018) The time of day plays a role in the conditions affecting 

windspeed and direction through diurnal cycling.(VanCuren et al., 2012) In cases of higher 

windspeeds, it has previously been shown to correlate with a decrease in both fine and 

course aerosols in the ocean.(Pant et al., 2008; Montero et al., 2016; Dueker et al., 2017) In 
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the case of GLSM, the relatively small size and depth may cause less wave formation and 

breaking than we would see in large lake spray or sea spray studies, instead likely having 

aerosol production limited to the surf zone and mechanical disturbances of the surface. LE, 

however, would be more likely to produce larger numbers of aerosols from wave breaking 

and bubble-bursting due to the larger size and depth.(May et al., 2018b) Previous studies 

have shown a difference in particle counts with respect to wind direction when it caused a 

switch from offshore to onshore winds as wind can drive droplet formation from the water 

surface.(Hu et al., 2020a; Ross et al., 2022) Our drone sampling missions were conducted 

exclusively during onshore winds, so consequently we were unable to examine potential 

associations of particle counts with offshore winds. Since all of our sampling missions 

were conducted during onshore winds, we speculate that a significant fraction of the 

observed airborne particles were from the lakes studied. We acknowledge, however, that 

some of the particles may have originated from other non-lake sources. Future experiments 

with multiple background sampling locations would help to elucidate potential 

contributions to airborne particle concentrations.  

Sixty percent (15/25) of the impinger samples contained at least one biotic 

(fluorescent) object. We saw higher numbers on average from LE, which could be caused 

by lake chemistry or environmental conditions that favor aerosolization of biotic 

objects.(Pant et al., 2008; Montero et al., 2016) Since the biotic objects were often on the 

larger end of the range (3-10 µm), we speculate that they may have stronger associations 

with particle counts of those sizes. Unfortunately, due to the low number of particle counts 

in the larger size bins, we were unable to provide a constructive analysis of this potential 

association.  Impinger samples were also analyzed for a suite of cyanotoxins using LC-
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MS/MS, but no cyanotoxins were detected in any of the samples. Hanlon et al. 

(2022)(Hanlon et al., 2022) conducted a series of water sampling missions at GLSM and 

LE during the same calendar dates and reported high levels of microcystin in the water, 

15.00 and 1.92 µg/L, respectively. HAB-associated toxins can be aerosolized and 

transported to inland communities where they threaten the health of humans.(Fleming et 

al., 2005a; Pierce et al., 2005; Cheng et al., 2007; Kirkpatrick et al., 2011; Plaas and Paerl, 

2021) In addition, wave breaks and bubble-bursting cause water to spray and contributes to 

aerosol production and the dispersal of cells, especially in larger bodies of water such as 

LE,8 and cyanotoxins into the air.(Pierce et al., 2005) Aerosols produced in this way have 

been found to contain MCs in samples collected over land near a HAB, showing that the 

toxin can be transported over land to the surrounding area.(May et al., 2018b) Sutherland et 

al.(Sutherland, 2021) detected anatoxin-a in air samples during a HAB at Capaum Pond on 

Nantucket Island, Massachusetts, USA in 2019. Though air samples have not yet been 

incorporated into routine HAB monitoring in freshwater environments, the spread of HAB-

associated aerosols in marine environments (e.g., brevetoxin) is known to cause respiratory 

problems and can be dangerous to those with underlying health conditions.(Fleming et al., 

2005a) The approach showcased here demonstrates the feasibility of a rapid drone-based 

system to extend monitoring protocols beyond the water’s edge. And while we did not 

necessarily detect any appreciable toxin values in our samples, our data regarding the 

distribution of particles as well as impingement of numerous fluorescent objects does 

validate the approach. 

The concerns regarding the accuracy of lightweight and inexpensive OPCs is an 

important limitation to consider when comparing values of one OPC to another or to 
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determine absolute high or low levels of particles.(Bulot et al., 2019; Giordano et al., 2021) 

Our field experiments relied on a single OPC as part of the AirDROPS package. However, 

as shown in the laboratory calibration experiments, the data recorded from this OPC were 

robust and consistent with simultaneous measurements recorded from the APS.  

Additional work is needed to understand the environmental factors associated with 

the potential aerosolization and transport of cyanobacterial cells and toxins in aquatic 

environments. Higher windspeeds may decrease total particle counts above a lake, but also 

drive aerosol production closer to the lake surface.(Dueker et al., 2017; Hu et al., 2020a; 

Olson et al., 2020) Though our study was only focused on an altitude of 10 m above the 

water surface, it sets the stage for future work to examine the vertical distribution of HABs 

above a lake surface. Powers et al. (Powers et al., 2018) conducted simultaneous sampling 

missions of microorganisms with a UAS and a USV at Claytor Lake, Virginia, USA. It 

should be noted that although Claytor Lake had relatively high levels of the bacterium 

Pseudomonas syringae, it was not experiencing a HAB. Additional research is needed to 

understand threats, manage risks, mitigate incidents, develop capabilities, and strengthen 

collaborations for improved water quality and security.(Schmale et al., 2019) Aerial and 

aquatic robots can be fitted with the tools to be used to work alongside health professionals 

and air and water quality experts to provide critical and timely information to guide 

regulatory decisions. Modeling of particle counts as a function of the wind speed, wind 

direction, and temperature could allow for future predictions of areas impacted by HAB-

associated aerosols.(Ross et al., 2022) Such information is critical for determining time-

sensitive health advisories, and to create public health forecasting models for the 

communities of people that live near contaminated bodies of water.   
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3.1 Abstract  

Harmful algal blooms (HABs), caused mostly by toxic cyanobacteria, are a threat to 

aquatic ecosystems. New information is needed about the environmental conditions 

associated with the aerosolization and transport of HAB cells and their associated toxins. 

This information is critical to help inform our understanding of potential exposures.  We 

used a ground-based sensor package to monitor weather, measure airborne particles, and 

collect air samples on the shore of a freshwater HAB (bloom of Rhaphidiopsis, Lake Anna, 

Virginia) and a marine HAB (bloom of Karenia brevis, Gulf Coast, Florida). Each sensor 

package contained a sonic anemometer, impinger, and optical particle counter. A drone was 

used to measure vertical profiles of windspeed and wind direction at the shore and above 

the freshwater HAB. At the Florida sites, airborne particle number concentrations (cm-3) 

increased throughout the day and the wind direction (offshore versus onshore) was strongly 

associated with these number concentrations (cm-3). Offshore wind sources had particle 

number concentrations (cm-3) 3 to 4 times higher than those of onshore wind sources. A 

predictive model, trained on a random set of weather and particle number concentrations 

(cm-3) collected over the same time period, was able to predict airborne particle number 

concentrations (cm-3) with an R Squared value of 0.581 for the freshwater HAB in Virginia 

and an R Squared value of 0.804 for the marine HAB in Florida. The drone-based vertical 

profiles of the wind velocity showed differences in wind speed and direction at different 

altitudes, highlighting the need for wind measurements at multiple heights to capture 

environmental conditions driving the atmospheric transport of aerosolized HAB toxins. A 

surface flux equation was used to determine the rate of aerosol production at the beach 

sites based on the measured particle number concentrations (cm-3) and weather conditions. 

Additional work is needed to better understand the short-term fate and transport of 
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aerosolized cyanobacterial cells and toxins and how this is influenced by local weather 

conditions. 
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3.2 Introduction 

Freshwater and marine ecosystems are experiencing an increasing number of harmful algal 

blooms (HABs)(Backer et al., 2015). HABs often result from the proliferation of toxin-

producing cyanobacteria that are harmful to humans and wildlife(Watson et al., 2015; 

Powers et al., 2018; Schmale et al., 2019; Hu et al., 2020a). HABs known as red tides may 

occur in marine environments, and aerosolized toxins from blooms of red tide are known to 

have harmful impacts on people(Pierce et al., 2003; Ross et al., 2022). HABs in lake 

systems often occur in areas with warmer water and high levels of phosphorus favorable to 

cyanobacterial growth (Anderson et al., 2002; Hoorman et al., 2008; Bertani et al., 2016). 

However, ocean HABs are increasingly common as well and may be on the rise due to 

human influence and ocean acidification(Smayda, 1997; Fu et al., 2012; Dees et al., 2017; 

Wells and Karlson, 2018). The increase in HAB occurrence is concerning from a human 

and animal health perspective and requires further study involving higher resolution 

observations to better pinpoint the factors driving increased occurrence of ocean and lake 

HABs(Fu et al., 2012; Backer et al., 2015; Wells et al., 2020). 

 

Research is needed to better understand how to address and mitigate the impacts of the 

ever-increasing HAB threat to shorelines and downwind impact areas(Kirkpatrick et al., 

2010; Olson et al., 2020). Generally, water samples are collected by hand from boats and 

processed at off-site laboratories(Maloney and Carnes, 1966). Recently, robots have 

presented new opportunities to sample HABs with minimal human exposure (Hanlon et al., 

2022, Bilyeu et al., 2022). Such approaches can be used to inform health guidelines and 

policy around HAB occurrences to best keep exposure risks low(Carmichael and Boyer, 

2016; Dueker et al., 2017; Hu et al., 2020a). The negative economic impact of HABs can 
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also be mitigated through the use of predictive models providing a benefit to the 

individuals of impacted communities(Moeltner et al., 2022). 

 

Small uncrewed aircraft systems (sUASs or drones) have been used to monitor HABs and 

assess their potential impact on surrounding communities(González-Rocha et al., 2020, 

2023; Bilyeu et al., 2022). Early applications of sUAS for HAB monitoring involved 

integrating cameras on board fixed- and rotary-wing sUAS for image data collection (Wu, 

2019). More recently, sUAS techniques have been developed to sample both air and water 

affected by HABs. Hanlon et al. (2022) used a drone water sampling system to collect water 

samples from three lakes with HABs. Bilyeu et al. (2022) used an Airborne DROne Particle-

monitoring System (AirDROPS) to monitor, collect, and characterize airborne particles over 

two HABs. Gonzalez-Rocha et al. (2023) extended a model-based (sensor free) wind 

estimation technique to measure atmospheric flows in aquatic environments(González-

Rocha et al., 2019, 2020). 

 

Though mechanisms of aerosolization in marine and freshwater environments have 

received considerable attention(Pierce et al., 2003), new information is needed to 

understand the environmental factors driving high counts of aerosolized HAB cells and 

toxins(Stumpf, 2001; Hoorman et al., 2008; Harb and Foroutan, 2019; Harb et al., 2021). 

We hypothesized that wind directions and speed impact airborne particle concentration 

differently in marine vs freshwater systems. To test this hypothesis, we conducted drone-

based and ground-based sampling missions on the shore of a freshwater HAB (bloom of 

Rhaphidiopsis, Lake Anna, Virginia) and a marine HAB (bloom of Karenia brevis, Gulf 
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Coast, Florida). The specific objectives of our work were to: (1) monitor airborne particles 

on the shore of a freshwater HAB (bloom of Rhaphidiopsis, Lake Anna, Virginia) and a 

marine HAB (bloom of Karenia brevis, Gulf Coast, Florida), (2) observe and model 

potential associations of wind direction, wind speed, and temperature with airborne particle 

number concentrations (cm-3), and (3) determine onshore and offshore wind profiles at the 

freshwater HAB site using a small drone platform. 

 

3.3 Methods and Materials 

3.3.1 Study Sites 

Studies were conducted along the shore of a freshwater HAB at Lake Anna, Virginia, and a 

marine HAB along the Gulf Coast of Florida (Figure 1). Lake Anna is a reservoir lake in 

North-Central Virginia of 13,000 acres and is the third largest lake in the state(Lake Anna 

State Park: General information, 2023).  
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Figure 1. One sampling location at Lake Anna, VA marked in yellow, and the two beaches in Manasota, FL 

and Seagate FL in red are marked where sampling was performed. Lake Anna consisted of ground level and 

drone-based sampling while Manasota and Seagate beaches consisted of only ground level sensing. 

 

Our first sampling site was near the inflow of Pamunkey Creek into Lake Anna (Site 1; 

38.14132 N, 77.9276 W). The second sampling site on Lake Anna was on the end of a 

peninsula between the inflows of Gold Mine Creek and Hickory Creek (Site 2; 38.11544 

N, 77.94146 W). Both  locations are in the Northwest portion of the lake and were chosen 
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as a sample site due to recent HAB occurrences in the lake(Hanlon et al., 2022).  Ground-

based sensors were placed on the shoreline within 5-10 meters of the lake or ocean shore 

(Table 1).   

Table 1. Shows the date, time, location, and lake/ocean designator for each sampling period. 

  Ground  Operations   

Date Start End Latitude Longitude Description 

12/3/2019 11:15 11:45 26.20848 -81.8169 Ocean 

12/3/2019 12:00 12:30 26.20848 -81.8169 Ocean 

12/3/2019 12:45 13:15 26.20848 -81.8169 Ocean 

12/3/2019 13:30 14:00 26.20848 -81.8169 Ocean 

12/3/2019 14:15 14:45 26.20848 -81.8169 Ocean 

12/3/2019 15:00 15:30 26.20848 -81.8169 Ocean 

12/4/2019 9:45 10:15 27.01129 -82.4135 Ocean 

12/4/2019 10:30 11:00 27.01129 -82.4135 Ocean 

12/4/2019 11:15 11:45 27.01129 -82.4135 Ocean 

12/4/2019 12:00 12:30 27.01129 -82.4135 Ocean 

12/4/2019 12:45 13:15 27.01129 -82.4135 Ocean 

12/4/2019 13:30 14:00 27.01129 -82.4135 Ocean 

30/6/2020 10:15 11:00 38.1416 -77.9274 Lake 

30/6/2020 11:15 11:45 38.1416 -77.9274 Lake 

7/7/2020 9:15 9:50 38.1413 -77.9276 Lake 

7/7/2020 9:55 10:25 38.1413 -77.9276 Lake 

7/7/2020 10:35 11:05 38.1413 -77.9276 Lake 

7/7/2020 11:20 11:30 38.1413 -77.9276 Lake 

7/7/2020 12:00 12:30 38.1413 -77.9276 Lake 

7/7/2020 12:45 13:20 38.1413 -77.9276 Lake 

7/7/2020 13:35 14:05 38.1413 -77.9276 Lake 

7/8/2020 10:40 11:10 38.11543 -77.9415 Lake 

7/8/2020 11:25 11:55 38.11543 -77.9415 Lake 

7/8/2020 12:05 12:35 38.11543 -77.9415 Lake 

7/8/2020 12:45 13:15 38.11543 -77.9415 Lake 

 

 

Drone measurements were taken over land as well as over the water surface (Table 2, 

Figure 2).  
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Table 2. Shows the date, time, maximum altitude, location, and onshore or offshore designation of profile. 

Drone Flight Operations 

Date Start End Height  

(m) 
Latitude Longitude Description 

7/7/2020 9:21 9:23 80 38.141046 -77.928161 Offshore 

7/7/2020 9:23 9:26 80 38.141177 -77.927314 Onshore 

7/7/2020 9:58 10:00 80 38.141046 -77.928161 Offshore 

7/7/2020 10:00 10:02 80 38.141177 -77.927314 Onshore 

7/7/2020 10:35 10:37 80 38.141046 -77.928161 Offshore 

7/7/2020 10:37 10:40 80 38.141177 -77.927314 Onshore 

7/7/2020 10:55 10:58 80 38.141046 -77.928161 Offshore 

7/7/2020 10:58 11:00 80 38.141177 -77.927314 Onshore 

7/7/2020 11:21 11:24 80 38.141046 -77.928161 Offshore 

7/7/2020 11:24 11:26 80 38.141177 -77.927314 Onshore 

7/7/2020 11:42 11:44 80 38.141046 -77.928161 Offshore 

7/7/2020 11:44 11:46 80 38.141177 -77.927314 Onshore 

7/7/2020 `12:00 12:02 80 38.141046 -77.928161 Offshore 

7/7/2020 12:02 12:05 80 38.141177 -77.927314 Onshore 

7/7/2020 12:19 12:22 80 38.141046 -77.928161 Offshore 

7/7/2020 12:22 12:24 80 38.141177 -77.927314 Onshore 

7/7/2020 13:09 13:12 80 38.141046 -77.928161 Offshore 

7/7/2020 13:12 13:15 80 38.141177 -77.927314 Onshore 

7/7/2020 13:40 13:42 80 38.141046 -77.928161 Offshore 

7/7/2020 13:42 13:44 80 38.141177 -77.927314 Onshore 

7/7/2020 13:58 14:01 80 38.141046 -77.928161 Offshore 

7/7/2020 14:01 14:03 80 38.141177 -77.927314 Onshore 
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Two ground-based devices were deployed simultaneously at Lake Anna, Virginia for 

multiple sampling periods (at least 30 minutes each). Two sampling periods were 

conducted on June 30th, 2020, seven sampling periods were conducted on July 7th, 2020, 

and four sampling periods were conducted on July 8th, 2020. Wind profiles were performed 

at Lake Anna following a 30-minute cadence, on average.     

 

Figure 2. A shows the ground sampling device in location at Seagate Beach FL, December 3, 2019. B shows 

a closeup of the impinger actively sampling the air while the weather station is running in Florida. C shows 

the ground sampling device at Lake Anna, Virginia collecting near the lake shore on June 30, 2020. D shows 

combined drone and ground sampling at Lake Anna. 

 

The Gulf of Mexico experiences intermittent HABs caused by K. brevis which makes the 

Florida Gulf coast a prime location for HAB aerosol sampling(Pierce et al., 2003). Ground-

based sensor sampling was chosen for this location by using the Mote Beach Conditions 



51  

 
 

Reporting System and next-day forecasting from a data-driven model (Ross et al., 2022) to 

determine a beach with a high probability of HAB irritation(Mote Beach Conditions 

Reporting System, 2022). Seagate beach was chosen as a site, located at GPS coordinates 

26.20848 N, 81.81687 W. To capture samples earlier in the morning, Manasota Beach was 

chosen for our second sample location. This site was located at GPS coordinates 27.01129 

N, 82.41348 W. Two sampling devices were used simultaneously for 30-minute 

increments. Six sampling periods were performed on December 3rd and 4th, 2019 at Seagate 

and Manasota Beach, respectively. A total of 24 collected beach weather and particle count 

measurements were collected during this period. 

 

Fourteen sampling periods were conducted along the Gulf of Mexico coast in Florida, and 

11 were conducted at Lake Anna in Virginia (Table 1). Sampling periods consisted of 

ground sensors measuring weather and particle number concentrations (cm-3) 

approximately 2 meters above ground level near to the shore at all sites (Table 1). Drone 

flights were performed during the Lake Anna sampling periods, both above the shore and 

above the water alternately, over a range of elevation from 10 to 80 meters to measure the 

wind speed and direction at different altitudes (Table 2). 

 

3.3.2 Ground-based air particle and weather monitoring system 

 A sensor system integrating weather monitoring, impinger, and particle counting 

capabilities was utilized to take ground measurements 2 m above ground level. The 

weather data was collected with a meteorological (MET) sensor, an Atmos 22 sonic 

anemometer weather station atop the sensor measuring the weather conditions at 1 Hz. The 
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impinging device and the optical particle counter (OPC; Plantower PMS 7003) operated 

under the same system as described in Bilyeu et al.(Bilyeu et al., 2022) for the airborne 

drone particle-monitoring system. Particle number concentrations (cm-3) were measured as 

the number of particles with diameter beyond 0.3 µm in 0.1 L of air. These numbers were 

then converted into particle number concentrations (cm-3). The difference between the 

drone system and the ground-based system was only in operation, with the ground-based 

sensors being started and stopped manually and the run times for the sensors lasting for 30 

minutes or more.  

 

3.3.3 Drone-based wind velocity measurements 

Vertical profiles of wind velocity were obtained from wind-induced perturbations to the 

steady motion of the quadrotor using the model-based wind estimation framework presented 

by Gonzalez-Rocha et al. (2019, 2020). This wind estimation framework employs linear 

time-invariant (LTI) models that characterize the vehicle's plunging, yawing, rolling, and 

pitching dynamics in hovering and steady-ascending flight. The models were characterized 

by employing an aircraft system identification algorithm developed by Morelli and Klein 

(2016). Aircraft system identification is a data-driven approach for determining the model 

structure and parameter estimates that describe the dynamics of an aircraft systems from 

measurements of pilot-induced excitation commands from equilibrium flight and the 

vehicle's dynamic response (i.e., position, attitude, translational velocity, and angular rates 

and control inputs). The LTI models corresponding to each equilibrium flight condition were 

then used to construct a wind-augmented model, which treats wind disturbances as 

unmeasured internal states. The wind-augmented model and measurements of position, 
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attitude, and respective time rates were used to estimate the wind using a state observer. The 

reliability of the wind velocity estimates obtained from the state observer has been validated 

in previous studies next to conventional in-situ and remote sensors (Gonzalez-Rocha et al., 

2020,2023). 

 

3.3.4 Data analyses 

Data were saved to microSD cards as csv files and then processed to remove corrupted data 

in Microsoft Excel. Microsoft Excel was also used to determine trends between measured 

weather conditions and particle number concentrations (cm-3) before statistical analysis. 

Potential associations between wind speed, wind direction, temperature and particle 

number concentrations (cm-3) were examined. Statistical analyses were performed using 

JMP Pro Version 16 software (Cary, North Carolina, USA). A model was fit using the JMP 

neural network as described in Bilyeu et al. (2022) using data collected from one ground 

sensor from Lake Anna and another model was made using a ground sensor from Manasota 

Beach. The Lake Anna model was trained on 5126 measurements and verified on 2563 

measurements, while the Manasota Beach model was trained on 3886 measurements and 

verified on 1944 measurements.  

 

Using the methods described in Clarke et. al. (2006)(Clarke et al., 2006) we were able to 

calculate the surface flux for 100% bubble coverage, S100, for the Florida beach testing 

sites. S100 is defined as the number of sea-salt aerosols generated per unit area of ocean 

surface completely covered by bubbles (100% coverage) per unit time. The equation to 

determine flux (cm-2 s-1) was as follows:  
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S100 = [Cs k Vwind h) / (Aavg L + 0.5 wo)]    (1) 

Where Cs is the measured average particle number concentration for each 30-minute 

interval (cm-3), k is the multiplier for tower Cs, set to 1.5, Vwind is the average wind speed 

for each 30-minute interval (m s-1), h is the height of sampler, which was 200 cm, Aavg is 

the mean bubble fraction coverage, set at 0.5, L is the distance the wave travels to shore, 

set at 20 m, and wo was the initial width of the bubble front set at 2 m. 

 

3.4 Results  

3.4.1 Wind direction and wind speed 

3.4.1.1 Lake Anna weather measurements 

Onshore wind measurements from the drone showed an increase in wind speed at all 

altitudes as the sampling period progressed through the morning (Figure 3). However, 

higher altitudes had consistently lower wind speeds until 11:00 AM local time. The 

offshore winds showed a similar trend of increasing wind speed from the beginning of 

sampling until 11:00 AM. The offshore winds were different, however, due to higher wind 

speeds at higher altitudes and lower wind speeds at lower altitudes (Figure 3). 
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Figure 3. Onshore and offshore wind profiles showing wind speed as a factor of altitude for flights taken 

over Lake Anna over the course of the day on July 7th, broken down based on wind coming from over the 

land or over the water.  

 

Comparing the ground sensors with the drone measurements on July 7th showed fairly 

consistent agreement between the two ground sensors and the drone measurements for 

wind source (Figure 4). This helps validate the measurements taken by the drone while 

showing that the ground sensor is not capturing the whole picture with regards to the 

weather effects experienced by HAB particles after emission from lake and ocean sources.  
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Figure 4. Wind direction at different altitudes over the course of the sampling day on July 7th, and the 

ground sensor measured wind directions of the corresponding times. 

 

 Wind direction measurements at Lake Anna Site 1 indicated sources from all directions, 

whereas at Site 2, the wind consistently originated from the East throughout the entire 

sampling period (Figure 5).  
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Figure 5. Wind direction source measured over the course of the sampling day, plotted as five-minute 

averages. The first two graphs show the 30th of June and 7th of July sampling beach along with the sampler 

location. The third graph shows the second beach site where measurements were made on the 8 th of July. To 

the right of each graph is the sensor location with the wind rose for the day overlaid. 
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3.4.1.2 Florida ground-based weather measurements  

The wind source direction measured at Seagate Beach and Manasota Beach in Florida 

mostly came from the North during our sampling period. Easterly morning winds shifted to 

Northwest winds later in the day (Figure 6). This trend is more clearly visible at Manasota 

Beach where sampling was started earlier in the day.   

 

Figure 6. The graphs show wind direction source measured over time at two different Florida beaches in 

December 2019 plotted as five-minute averages. The top graph shows measurements taken at Seagate beach 

on December 3rd while the bottom graph shows measurements taken at Manasota beach on December 4th. To 

the right of each graph is the sensor location with the wind rose for the day overlaid. 
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3.4.2 Particle number concentrations  

3.4.2.1 Lake Anna ground-based airborne particle concentrations 

Airborne particle concentrations (cm-3) at Lake Anna varied over the time of day we 

sampled as well as varying over the different sampling days with Site 1 showing a decrease 

in particle number concentrations (cm-3) over the course of the sampling periods and Site 2 

showing an increase in the particle number concentrations (cm-3) over the course of the 

sampling periods (Figure 7).  
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Figure 7. Particle number concentrations (cm-3) greater than 0.3 microns in diameter measured over the 

course of the day, plotted here as five-minute averages. The first two graphs represent June 30th and July 7th at 

the first Lake Anna beach site and the third graph represents July 8th at the second Lake Anna beach site. 
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The particle concentrations at Site 1 appeared to be higher on average than those observed 

at Site 2, ranging from 15-20 cm-3 measured on June 30th and from 25-45 cm-3 on July 7th, 

while Site 2 had a much lower concentration of particles ranging from 4.5-14 cm-3. Particle 

concentrations also showed some correlation with wind source, having lower 

concentrations for wind sources over land in the July 7th measurements, with wind 

direction being statistically significant for predicting particle concentration (Figure 8).  
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Figure 8. Particle number concentrations (cm-3) greater than 0.3 microns in diameter measured wind 

direction as five-minute averages during the sampling periods at Lake Anna beach sites one and two. The first 

two graphs depict beach site one during the sampling period of June 30th and July 7th. The third graph shows 

the data collected from beach site two on July 8th. 
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3.4.2.2 Florida ground-based airborne particle concentration 

Particle number concentrations (cm-3) at Seagate Beach did not appear to change much 

over the entire sampling day; however, particle number concentrations (cm-3) measured at 

Manasota Beach had a noticeable increase starting during the second sampling period 

(Figure 9). Both beaches measured particle number concentrations (cm-3) below 5 and 

highs of above 30 at Seagate Beach and above 45 at Manasota Beach (Figure 9). However, 

while the average particle number concentrations (cm-3) at Seagate beach remained low 

throughout the sampling period, we saw an increase in the particle number concentrations 

(cm-3) at Manasota Beach that started in our second sampling period and continued 

throughout the day.  
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Figure 9. The graphs show particle number concentrations (cm-3) greater than 0.3 microns in diameter 

measured over time at two different beaches in Florida on two days in December 2019 plotted as five-minute 

averages. The top graph shows Seagate beach on December 3rd and the bottom graph shows Manasota beach 

on December 4th.  
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3.4.3 Prediction modeling of particle concentrations due to weather effects 

Ground sensor particle number concentrations (cm-3) of particles greater than 0.3 µm in 

diameter were matched with the corresponding weather data collected during the same 

interval. A prediction equation was developed using the wind speed, wind direction, and 

temperature data from the collected ground sensor data at Lake Anna on July 7th, 2020, and 

from Manasota Beach on December 4th, 2019, and predicted particle concentrations were 

compared against the actual measured concentrations (Figure 10, Figure 11). The Lake 

Anna empirical prediction equation produced a model that had an R-Squared of 0.577 and 

a validation prediction R-Squared value of 0.582. The hidden node equations and 

prediction equation, are as follows: 

H1 = tanh[0.500 * (–48.213 1.354 WS – 0.014 WD + 1.621 T)]   (2) 

H2 = tanh[0.500 (26.013 + 0.275 WS – 0.010WD – 0.789T)]   (3) 

H3 = tanh[0.500 (–2.950 + 0.032WS + 0.0007WD + 0.153T)]   (4) 

Theta = 76.183 - 316.902H1 + 640.188H2 + 4521.478H3    (5) 

Where H1, H2, and H3 are the hidden node equations and Theta is the prediction equation 

giving particle count in number of particles per 0.1 liter as the output. WS is the measured 

wind speed, WD is the measured wind direction and T is the temperature. The output of the 

Theta equation is then divided by 100 to get particle count per cubic centimeter. 

 

The Manasota Beach empirical prediction equation produced a model that had a R-Squared 

of 0.804 and a validation prediction R Square of 0.802. The hidden node equations and 

prediction equation are as follows: 

 

H1 = tanh[0.500 (–8.722 – 0.138 WS + 0.024WD + 0.104T)]  (6) 
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H2 = tanh[0.500 (38.925 – 1.193WS – 0.005WD – 1.693T)]   (7) 

H3 = tanh[0.500 (9.500 + 0.154WS – 0.026WD – 0.120T)]   (8) 

Theta = –765.521 – 45377.467H1 – 682.357H2 – 43301.880H3  (9) 

Where H1, H2, and H3 are the hidden node equations and Theta is the prediction equation 

giving particle count in number of particles per 0.1 liter as the output. WS is the measured 

wind speed, WD is the measured wind direction and T is the temperature. The output of the 

Theta equation is then divided by 100 to get particle count per cubic centimeter. 

 

Figure 10. Measured vs. predicted particle number concentrations (cm-3) of air used in the best fit model for 

Lake Anna collected data. The model was made using wind speed, wind direction, temperature, and particle 

count data collected by the ground sensors at Lake Anna. The data was then put into JMP Pro neural network 

modeling where a model equation was trained on a random subset of the data with another subset held back 

for validation. 
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Figure 11. Measured vs. predicted particle number concentrations (cm-3) used in the best fit model for 

Manasota beach collected data. The model was made using wind speed, wind direction, temperature, and 

particle count data collected by the ground sensors at Manasota beach. The data was then put into JMP Pro 

neural network modeling where a model equation was trained on a random subset of the data with another 

subset held back for validation. 

 

 

3.4.4 Surface flux calculated for beach sites 

By using the values collected by the OPC and attached weather sensor we were able to 

determine the Cs and Vwind for 30-minute intervals at each beach site. Intervals were 

divided into onshore or offshore wind sources. The S100 was calculated for each 30-minute 

interval and the flux from the onshore source wind was subtracted from offshore source 

wind. On Seagate beach the calculated flux ranged from 522 to 878 cm-2 s-1 with an 

average flux of 645 cm-2 s-1. On Manasota beach the calculated flux ranged from 940 to 

3549 cm-2 s-1 with an average flux of 2692 cm-2 s-1. 
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3.5 Discussion 

Freshwater and marine HABs behave in different ways and produce aerosols under 

different weather conditions(May et al., 2016, 2018a; Li et al., 2021). Bubble bursting and 

wave breaking phenomena contribute to the release of HAB aerosols in lake and ocean 

systems(Deane and Stokes, 2002; Olson et al., 2020). We used a combination of ground 

and drone-based sensing to measure wind speed, wind direction, temperature, and airborne 

particle number concentrations (cm-3) on the shores of active HABs in Florida and 

Virginia. Our study provides new information on environmental conditions associated with 

increased particle number concentrations (cm-3) at active HAB sites and could contribute to 

measurements of potential human exposure to HAB toxins(Pierce et al., 2003, 2005; 

Carmichael and Boyer, 2016; Hu et al., 2020a).  

 

The particle number concentrations (cm-3) measured by a Plantower PMS 7003 OPC were 

used for comparison only against their own measurements in this study. Previous work 

with inexpensive OPCs and with the Plantower brand have shown the total particle number 

concentrations (cm-3) increased and decreased in tandem with more expensive and more 

reliable sensors while the bin sizes were less accurate(Levy Zamora et al., 2019; Hagan and 

Kroll, 2020; He et al., 2020). Our results showed the same inconsistency for the sensor’s 

ability to correctly size particles, so we have chosen to only look at total measured particle 

number concentrations (cm-3) greater than 0.3 µm diameter. Overall, less expensive OPCs 

seem to be reliable for measurements showing change in total particle number 

concentrations (cm-3)(Sang-Nourpour and Olfert, 2019; Crilley et al., 2020; He et al., 

2020). By using the measured total particle number concentrations (cm-3), which we match 

with our recorded weather conditions of wind speed, wind direction, and temperature, we 
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are able to measure how weather affects total particle count. In a previous study it was 

shown that higher particle number concentrations (cm-3) are likely associated with HAB 

aerosol(Bilyeu et al., 2022; Hanlon et al., 2022). 

 

At the Lake Anna sites, airborne particle number concentrations (cm-3) decreased over the 

sampling day at Site 1 and increased over the sampling day at Site 2. When testing the 

parameters of the prediction model, the measured wind speed was most strongly associated 

with higher particle number concentrations (cm-3) measured on the shore. Previous studies 

have shown airborne particle concentrations are influenced by windspeed on a lake surface, 

while shore based measurements have shown decreases in particle number concentrations 

(cm-3) associated with higher wind speeds(Dueker et al., 2017; Powers et al., 2018). 

Studies have shown lake HAB aerosols can contain toxins that may be transported large 

distances beyond the shore(May et al., 2018b; Sutherland, 2021). We have previously 

shown that particle number concentrations (cm-3) are significantly influenced by weather 

effects over the water in lake systems through similar particle and weather 

monitoring(Bilyeu et al., 2022). At the Florida sites, airborne particle number 

concentrations (cm-3) increased throughout the day and the wind direction (offshore versus 

onshore) was strongly associated with these number concentrations (cm-3). Offshore wind 

sources had particle number concentrations (cm-3) 3 to 4 times higher than those of onshore 

wind sources. When developing the prediction equation for the Florida sites, the wind 

direction had the greatest influence on particle number concentrations (cm-3) (P <0.001), 

followed by temperature (P <0.001), and windspeed (P <0.001). This is consistent with 

previous studies done on ocean shores measuring aerosols produced by wave breaking 
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phenomena and their potential to expose the beach to toxins(Pierce et al., 2005; Kirkpatrick 

et al., 2011; Ross et al., 2022). Our approach of measuring particle levels at the shore using 

cheap particle counters shows a potential low-cost method for monitoring HAB associated 

aerosols on beaches. 

 

A predictive model, trained on a random set of weather and particle count measurements 

collected over the same time period, was able to predict airborne particle number 

concentrations (cm-3) with an R Squared value of 0.581 for the freshwater HAB in Virginia 

and an R Squared value of 0.804 for the marine HAB in Florida. Previous methods to 

monitor HAB severity and inform the public have relied on slow water and aerosol testing 

or more subjective measurements of respiratory irritation levels(Kirkpatrick et al., 2011; 

Mote Beach Conditions Reporting System, 2022). We were able to create a prediction 

equation for a beach and lake site, the conditions that lead to higher levels of particle 

number concentrations (cm-3) in the prediction equations were different in the lake and 

ocean system and were different between lakes when compared to a previous study(Bilyeu 

et al., 2022). For example, the influence of wind speed on the level of particles could be 

more important for the lake system we measured due to the differences in how aerosols are 

produced in lake and ocean systems(Dueker et al., 2017; Hu et al., 2020a; Olson et al., 

2020). In both ocean and lake systems we were able to predict higher or lower levels of 

HAB aerosols due to the influence of measured weather conditions. Using this method, any 

ocean or lake experiencing a HAB could be monitored and set up with a model to predict 

HAB severity.  
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Surface flux provides an emission rate for aerosol production at the water 

surface(Meskhidze et al., 2013). Using known conditions about wave structure, wind 

speed, and particle number concentrations (cm-3) on shore, the surface flux can be 

calculated. We were able to calculate the surface flux for the beach sites during our sample 

period using the equation from Clarke et. al(Clarke et al., 2006). This analysis can be 

performed with ocean occurring HAB sites but there is currently no similar method for lake 

systems, as the method of aerosolization is different and less well studied(Slade et al., 

2010; May et al., 2016, 2018a). While our current results show that the better understood 

ocean aerosol system allows for more robust analysis through surface flux calculations, 

with more research into lake aerosols we will have better prediction equations available.  

 

The drone-based vertical profiles of the wind velocity showed differences in wind speed and 

direction at different altitudes, highlighting the need for wind measurements at multiple 

heights to capture environmental conditions driving the atmospheric transport of aerosolized 

HAB toxins. The comparison of onshore and offshore wind speed profiles shows the wind 

speed to be higher over the water. The higher wind speed conditions observed over water are 

likely due to the lower roughness length of the lake surface(May et al., 2016, 2018b).  As 

shown in Figure 6, the vertical wind speed gradient was also observed to be larger over the 

lake. The higher wind speed gradient measured over the lake is likely the result of lower 

surface temperatures. Lower surface temperatures produce less air mixing in the lower 

atmosphere, resulting in higher wind gradients due to wind shear(Dueker et al., 2017; 

Medina-Pérez et al., 2021).  Furthermore, the comparison of sUAS and ground sensor wind 
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measurements shows that sUAS technology can provide reliable observations of wind 

velocity(González-Rocha et al., 2019, 2023).  

 

Higher resolutions of wind velocity observations such as those collected by drone-based 

measuring platforms are critical for predicting the transport of toxins produced by HABs. 

Additional work is needed to better understand the short-term fate and transport of 

aerosolized cyanobacterial cells and toxins and how the local weather conditions influence 

their transport. Risks at the shoreline may not accurately measure the risk of long-range 

transport that could be driven by higher altitude winds(Prijith et al., 2012). Lake aerosols are 

known to travel long distances and therefore better understanding their downwind fate is 

important to informing public health surrounding HABs(May et al., 2016; Olson et al., 

2020). While our current methods of analysis for lake systems are not as accurate as ocean 

systems, lakes still play an important part in HAB aerosol production and distribution which 

requires further study(May et al., 2016; Harb and Foroutan, 2022). This study was focused 

on the measurements of particles at the shore but combined the wind measurements of 

different altitudes to give insight into a more unexplored area of HAB aerosol transport. In 

future studies, combining drone particle count measurements with air and ground wind 

measurements could help determine not only the near-shore impact of HAB toxins, but also 

predict their long-term fate. Using this data along with predictive models could then allow 

for broadcasting air quality as it relates to HABs to inform public safety and use of areas, 

lake, or ocean, impacted by HABs. 
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4.1 Abstract 

An accurate forecast of the red tide respiratory irritation level would improve the lives 

of many people living in areas affected by algal blooms. Using a decades-long 

database of daily beach conditions, two conceptually different models to forecast the 

respiratory irritation risk level one day ahead of time are trained. One model is wind-

based, using the current days’ respiratory level and the predicted wind direction of 

the following day. The other model is a probabilistic self-exciting Hawkes process 

model. Both models are trained on beaches in Florida during 2011-2017 and applied 

to the red tide bloom during 2018-2019. For beaches where there is enough 

historical data to develop a model, the model which performs best depends on the 

beach. The wind-based model is the most accurate at half the beaches, correctly 

predicting the respiratory risk level on average about 84% of the time. The Hawkes 

model is the most accurate (81% accuracy) at nearly all of the remaining beaches. 

Keywords: Red tide, Forecast, Respiratory irritation, Modeling, Hawkes process, 

Aerosol, HAB, Cyanobacteria, New tools, Public health 
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4.2 Author contributions 

4.2.1 Bilyeu contributions 

The paper entitled "Beach-level 24-hour forecasts of Florida red tide-induced respiratory 

irritation” was significantly influenced by the work of L. Bilyeu. This manuscript shows 

the development of two models to predict the level of respiratory irritation risk for the next 

day. The first model, utilizing current day respiratory irritation level and next day wind 

direction forecast, was in large part developed by the work of L. Bilyeu. The analysis of the 

data set to determine which factors were correlated with the respiratory irritation was 

performed by L. Bilyeu. L. Bilyeu and S. Ross worked together to analyze the data set and 

target specific beaches and times for the most useful periods to build a model from, as per 

figure 1 and figure 2. L. Bilyeu came up with the next day respiration predictions utilizing 

wind direction shown in section 2.1 which lead to the definition of onshore and off shore 

wind shown in figure 4 as well as the results shown in figure 5 and figure 6. 

 

4.3 Introduction 

 Harmful algal blooms of the toxic dinoflagellate Karenia brevis, referred to as “Florida red 

tide” (henceforth abbreviated as RT) have affected the Florida Gulf coast for centuries. There is 

emerging evidence that these blooms have increased in frequency, intensity, and geographic spread in 

recent years (e.g., (Alcock, 2007; Nierenberg et al., 2009, 2010a, 2010b; Fleming et al., 2011; A 

primer on Gulf of Mexico harmful algal blooms by Mote Marine Laboratory and Aquarium - Issuu, 

2014)). K. brevis produces brevetoxin, a neurotoxin that can result in massive fish kills and 

mortalities to marine mammals and sea birds. Indirectly, this can lead to neurotoxic shellfish 
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poisoning in humans from consuming contaminated shellfish (Kirkpatrick et al., 2006; A primer on 

Gulf of Mexico harmful algal blooms by Mote Marine Laboratory and Aquarium - Issuu, 2014). 

 More directly, and of primary interest for this study, brevetoxin is released into near-shore 

aerosol as RT cells are lysed by wave action, or aerosolized though bubble-mediated (Pietsch et al., 

2018) transport. If inhaled by humans, brevetoxin can produce upper and lower respiratory irritation, such 

as a burning sensation of eyes and nose, and a dry, choking cough. While these symptoms have been 

found to be relatively short-lived in healthy individuals (upon separation from the harmful aerosol), 

RT effects can be more severe and longer-lasting for people with chronic respiratory conditions, such 

as asthma (Backer et al., 2003; Alcock, 2007; Fleming et al., 2009, 2011; Nierenberg et al., 2010b; 

Kirkpatrick et al., 2011; A primer on Gulf of Mexico harmful algal blooms by Mote Marine 

Laboratory and Aquarium - Issuu, 2014).  

 In this study, the potential of forecasting beach-specific respiratory irritation one 

day ahead of time is assessed, using previous irritation reports at the same location. Two 

models are proposed: one based on the current respiratory irritation level and a forecast of 

the next day’s wind direction, and the other based on RT as a self-exciting process (or 

Hawkes process). Both are data-driven, trained on data on from 2011-2017, and tested on data 

from a severe RT bloom during 2018-2019. Both are compared with a simple persistence 

model, which assumes the next day’s respiratory irritation level will be the same as the 

current day’s. 

4.3.1 Monitoring of red tide blooms 

Monitoring for K. brevis blooms involves the following primary components. Satellite 

imagery is processed to locate potential blooms. Processed images are made available to 

managers and state health officials in the Gulf of Mexico through the National Oceanic and 
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Atmospheric Administration (NOAA) Harmful Algal Bloom Operational Forecast System 

(HAB-OFS) (National Oceanic and Atmospheric Administration, Harmful Algal Bloom 

Operational Forecast System, 2021). In Florida, where blooms tend to occur most 

frequently, water samples are collected weekly along the shore and from offshore 

transects by the Florida Fish and Wildlife Research Institute once a bloom is identified. 

Samples are delivered to a laboratory for cell enumeration via microscopy. Microscopic 

enumeration takes about one hour per sample (Hardison et al., 2019). Typically, samples 

are processed within 1–2 days and can take longer for more samples from remote areas. The 

resulting cell counts are then used by HAB-OFS to provide broad, county-wide forecasts of 

brevetoxin exposure risks. The cell count data for a particular county can be up to a week 

old by the time it is available to the public. In terms of forecast accuracy, Stumpf et al. 

(Stumpf et al., 2009) found that while county-wide forecasts of respiratory risk were correct 

70% of the time, they were only correct 20% of the time when applied to individual beaches. 

Recently, beach-level 24-hour forecasts for respiratory impacts have received the most focus 

from policy agencies (Moeltner et al., 2022). The Gulf of Mexico Coastal Ocean Observing 

System (GCOOS) recently developed a beach-level risk forecast that includes more than 

20 Gulf Coast beaches (HAB Forecasts, n.d.). The forecast uses current wind forecasts as 

well as near real-time cell counts of K. brevis from water samples enabled by HABscope, a 

portable microscope system (Hardison et al., 2019). While the beach reporting system described 

below provides different data (actual beach-level respiratory impact, collected daily over 

several years), one can envision the potential to tie in to existing forecast frameworks, fusing 

the multiple data sources for more accurate forecasts or greater spatial coverage.  



79  

 
 

4.3.2 Beach Conditions Reporting System 

To address the need for location-specific conditions, a Beach Conditions Reporting System 

(BCRS) was initiated in 2006 (Kirkpatrick et al., 2008; Currier et al., 2009; Stumpf et al., 

2009; Nierenberg et al., 2011) and was redeveloped in 2015 when it began gaining public 

usership (Mote Beach Conditions Reporting System, 2022). From 2017-2019, the site gained 

approximately 1.5 million users. The BCRS provided smartphones to (professional) lifeguards 

and park rangers with an app designed for reporting beach conditions. Twice each day (10:00 

and 15:00 local time), lifeguards and park rangers report occurrence of coughing as described 

further below (and other conditions such as presence of dead fish). While lacking the 

quantification and precision of microscopy, the reports provide beachgoers with useful real-

time information for adequate planning (i.e., severity of aerosolized toxins, potential risks to 

asthmatics, presence of dead fish, etc.). 

The BCRS is managed by Mote Marine Laboratory with lifeguards and park rangers as the 

primary reporters in several counties (Mote Beach Conditions Reporting System, 2022). 

The BCRS data compilation is automated, with timely sharing of data with agencies, 

including Florida Fish and Wildlife Conservation Commission and NOAA. 

Though the BCRS provides more timely information about beach conditions than the 

weekly sampling described earlier, it does not provide key information needed for consistent 

forecasts. It provides no direct information on K. brevis cell presence, but rather an indirect 

assessment of K. brevis cell presence via water color and the presence of dead fish. 

While RT outbreaks can occur throughout the entire year, aerosolized RT impacts have shown 

substantial variability both in a temporal and spatial sense. They can last from a few hours 
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to multiple days or even weeks at a given site (e.g., beach), and vary in intensity across 

sites at a given point in time, with heavily impacted areas at times alternating with 

completely unaffected shoreline segments (Nierenberg et al., 2009). 

While efforts are ongoing to curb RT blooms via prevention and control methods (Alcock, 

2007; Vargo et al., 2008; Nierenberg et al., 2010a; Kirkpatrick et al., 2014), the 

predominant management strategy to date has been mitigation, via early detection and 

avoidance of human contact (Alcock, 2007; A primer on Gulf of Mexico harmful algal 

blooms by Mote Marine Laboratory and Aquarium - Issuu, 2014). 

 

4.4 Methods 

Below, the RT respiratory irritation data set is described. Afterward, two different models 

to predict RT irritation risk one day ahead of time are described: a wind-based model and a 

Hawkes process model. 

4.4.1 Respiratory irritation data 

Starting in August 2006, the professional lifeguard corps in Sarasota County began 

twice-daily reports (approx. 10:00 and 15:00 local time) of the presence of respiratory 

irritation at six sites, as part of the BCRS. In January 2007, two additional lifeguard sites 

were added in Manatee County. Respiratory irritation is defined by the amount of coughing 

observed in addition to the personal conditions experienced by the lifeguard. The presence of 

people coughing is used as a proxy for respiratory irritation (cough, nasal congestion, throat 

irritation, chest tightness, wheezing, and shortness of breath). Coughing has been documented as 

a response to K. brevis aerosols in studies involving occupationally exposed workers, 
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recreationally exposed beachgoers, and asthmatics (Backer et al., 2003, 2005; Fleming et al., 

2005b, 2007). 

Lifeguards ‘listen’ to beachgoers for the presence and/or frequency of coughing. The 

symptoms observed by the lifeguards are reported at various levels of respiratory irritation as 

shown in Table 1. Irritation levels are given 

 

Irritation level Risk level In a 30 s audio sample 

None Low No coughing/sneezing heard in 30 s 

Slight Low A few coughs/sneezes heard in 30 s 

Moderate High A cough/sneeze heard every 5 s 

High High Coughing/sneezing almost continuously 

Table 1: The four-tiered red tide respiratory irritation levels reported in the Beach Condi- tions Reporting 

System, and the corresponding two-tiered risk level defined for this study. 

on a four-tiered scale from ‘None’ (no coughing noted nearby), ‘Slight’ (a few coughs and 

sneezes within 30 seconds), ‘Moderate’ (A cough/sneeze heard every 5 seconds), and 

‘High’ (continuous coughing and sneezing in nearby surroundings). For portions of the 

analysis below, moderate and high classes are together as ‘high’ risk, as these were the 

level at which impacts affect the general public (Stumpf et al., 2009). The ‘none’ and 

‘slight’ are grouped as ‘low’ risk. The two-tiered (binary) classification of RT 

respiratory irritation risk was used in this study for an initial analysis of forecasting 

methods, based on historical data. 
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4.4.2 Statistics describing the data set 

Since December 2011, the BCRS has monitored RT conditions at over 40 beaches in nine 

counties along the Gulf coast via citizen scientists, in most cases local lifeguards. This 

study considered only the time frame when 40 beaches were reporting. The eight beaches 

which are the focus of this study (see Figure 1) were chosen because they were the only 

beaches with enough reports of high respiratory risk days to develop a convergent model, as 

described in the Methods.  

 

 

Figure 1: Eight beaches along the Florida Gulf Coast out of 40 for which reporting is available from 2011-

2019. These eight have the highest number of reported red tide respiratory events: six are in Sarasota 

County and two are in Manatee County. 
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Figure 2: Reports of respiratory irritation caused by red tide for Sarasota County, from December 2011 to 

April 2019. 

Figure 2 shows the annual aggregate sum of RT irritation reports (level ‘slight’ or higher) from 

the six beaches in Sarasota County. It is clear that in 2018, the county was especially hard-hit 

by RT. 

For the purposes of the model, only the highest daily irritation level is considered. Reports 

are given twice per day, separated by only a few hours, and are often the same. When 

they differ, the higher of the four-tiered irritation level is used to describe the risk-level 

for that day. For the two-tiered irritation risk of high and low, there was near unanimous 

agreement between the two daily reports. 

Correlation of irritation level across distance and time. From the BCRS database, correlation 

of the respiratory irritation level with nearby beaches is considered. For the four-tier irritation levels 

described as None to High (see Table 1), numerical values 1 through 4 were assigned, respectively. 

As one can see in the left panel of Figure 3, the correlation of nearby beaches (within a 

few km) is high, but drops off to about 50% for beaches from 5 km up to approximately 25  
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Figure 3: (left) Correlation of red tide respiratory irritation level between the different beaches in 

Figure 1 as a function of coastline distance. (right) The average auto-correlation of a beach’s red tide 

respiratory irritation level with time. 

km away, decreasing approximately monotonically with distance. One can also consider the 

correlation of irritation level across time for an individual beach. The average 

autocorrelation of a beach’s respiratory irritation level versus time-lag is reported. Notice there 

is a moderate correlation for 1 day, but the correlation drops to about zero after 2 days. These 

spatiotemporal correlations are reported merely to describe the data set. They are not 

incorporated into the models described below. 

4.4.3 Partition of data into training and testing sets 

The BCRS database contains respiratory irritation reports from December 2011 to April 

2019. Following standard practice in machine learning (Brunton and Kutz, 2019), a data set 

must be partitioned into a training and testing set. A model is constructed from the 

training set and validated on the testing set. Training on earlier data in order to test on 

later data is a common method as it mimics forecasting, and this approach will be followed 

in the current study. The data reveal that there was a timeframe of a significant number of 

reports during 2018 until early 2019 (Figure 2). The 2018-2019 time-frame therefore 
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emerges as a testing data set. All earlier data, from 2011-Dec-31 to 2017-Dec-31, are 

considered as the training data set. 

The database has long stretches of no respiratory irritation reports (that is, recorded as None). 

For forecasting purposes, the ability to predict respiratory irritation during a cluster of such 

events is a primary focus of this study. To be precise, a red tide respiratory irritation episode 

is defined on a beach-by-beach basis for all data as follows. A RT respiratory irritation 

episode is said to begin the day when the BCRS irritation report (see Table 1) first goes 

above None and ends 7 days after the last irritation report above None. 

 

4.4.4 Wind-based model 

The wind direction reported from the BCRS at each beach was given as one of the eight usual 

directional octants of width 45◦ (N, NE, E, SE, S, SW, W, and NW). For the beaches of 

interest on the west coast of Florida, onshore winds were defined as winds blowing from 168.75◦ 

to 326.25◦ (S clockwise to NW, following (Stumpf et al., 2003, 2009)), which presumes the 

330◦ to 150◦ orientation of the coastline, as shown in Figure 4. It is noted that the beach 

coastlines do not deviate enough from this assumed coastline for the coarseness of the input 

wind direction to make a difference in modeling. 

For a wind-based model, the following statistical analysis from the BCRS database is 

performed for the training set (years 2011-2017), restricted only to RT respiratory irritation 

periods. For a respiratory irritation level of rt on day t, where rt ∈ {None, Slight, Moderate, 

High}, the probability of rt+1 on day t + 1 is calculated, based on the frequencies of such 

occurrences in the database. Two conditions are considered: onshore winds on day t + 1 
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Figure 4: Definition of onshore and offshore wind directions for the beaches studied. The standard wind 

direction convention is used, where direction denotes where the wind is coming from. 

And offshore winds on day t + 1. The results are shown in Figure 5. For instance, if today’s 

respiratory irritation level is Moderate, and there will be onshore winds tomorrow, then with 

over 60% probability, tomorrow’s irritation level will be Moderate or High (high risk). On 

the other hand, if tomorrow’s winds are offshore, then with about 60% probability the 

irritation level will improve, to Slight or None (low risk). 

If this probability distribution is assumed to hold for future events, then one has a 

straightforward forecast model for the respiratory irritation level based on the weather 

forecast, in particular, the wind direction forecast. To get a deterministic model in place of a 

probabilistic model, one can assume that the state with the maximum likelihood is the one 

which occurs. This leads to the simple model given in Figure 6. For instance, if the irritation 
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Figure 5: Respiratory irritation level on day t + 1 as a function of the level on day t and the wind condition on day 

t + 1; onshore or offshore winds. 

level today is at None, but tomorrow has onshore winds, the maximum likelihood is that it 

will be Slight tomorrow, since the light-blue bar in the first stack of the left panel of 

Figure 5 is longer than all others. In place of the four-tiered irritation level, one can use the 

simpler two-tiered irritation risk level, low and high, as given in Table 1. This coarser, 

binary description of the irritation level is used as it is more amenable to modeling and 

validation. 

 

Figure 6: Wind-based respiratory irritation model. 
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4.4.5 Hawkes process model 

Hawkes processes have been used to model a remarkable range of phenomena. From 

earthquakes (Ogata, 1988; Türkyilmaz et al., 2013), to gang related violence (Mohler et 

al., 2011; Park et al., 2021) to econometrics (Bacry et al., 2013; Affine Point Processes and 

Portfolio Credit Risk | SIAM Journal on Financial Mathematics, n.d.). This type of model 

performs well in situations where there is evidence for a clustering of events in time. 

Hawkes processes are a type of temporal point process. The classic temporal point process is 

the homogeneous Poisson process, an example of which is the number of asteroids striking the 

Earth. Presumably the probability of an asteroid strike is independent of whether or not 

there was a previous strike. Poisson processes are thus “memoryless” and events are roughly 

equally spaced in time. An illustrative example of a homogeneous Poisson process 

compared to a non-homogeneous (Hawkes) Poisson process is provided in Appendix A. 

A homogeneous Poisson process is a stochastic point process in which events happen with 

constant rate λ and with probability, 

 

 

𝑃Poisson(𝑘|λ) =
(λ𝑡)𝑘

𝑘!
𝑒−λ𝑡     (1)
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where λ has units of inverse time. A non-homogeneous Poisson process is one in which the 

rate parameter λ(t) is a function of time. A linear Hawkes process with an exponential kernel 

(HAWKES, 1971) is a non-homogeneous Poisson process where, 

λ(𝑡) = λ0 + ∑ α𝑒−β(𝑡−τ𝑖)𝑖  (2) 

where λ0 ≥ 0 is the background intensity rate, α > 0 is the excitation level, β > 0 is the 

reversion level, and {τ1, τ2, ...τi} is the observed true sequence of past event times (high risk 

days in the current study). 

A Hawkes process is known as a self-exciting process because when an excitation happens the rate 

increases before decaying to the natural unexcited rate λ0 (see Appendix A). The rate initially 

increases by the amount α when an event arrives but exponentially decays with rate β towards λ0. The 

Hawkes process maintains a finite rate λ(t) so long as α < β (Laub et al., 2015). 

Estimation of the parameters for the Hawkes process is done via maximum likelihood estimation 

(MLE) of Fisher (On the mathematical foundations of theoretical statistics | Philosophical 

Transactions of the Royal Society of London. Series A, Containing Papers of a 

Mathematical or Physical Character, n.d.), a procedure for estimating model parameters from 

a training set such that the observed data is most probable (Brunton and Kutz, 2019). Details 

of MLE for a Hawkes process can be found in Appendix B. For each beach, the 

parameters λ0, α, β, and Pthreshold are estimated based on the training data set for that beach. 

If the parameters converge to the same values independent of random initial parameters in 

the MLE process, the Hawkes model has converged. Only beaches which have a convergent 

Hawkes model are included in the Results. It is expected that not all, or even a majority 

of the beaches will have convergent Hawkes models, as it is known that for some types of 
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data, parameter estimation is quite sensitive to the random initial guess (Veen and 

Schoenberg, 2008). 

Once the parameters {λ0, α, β, Pthreshold} have been estimated for a given beach, the probability 

of observing no events (high risk days) at each time is determined by substituting λ(t) into eq. 

(1), where λ(t) is given by eq. (2). This gives, on each day t, the probability of the next day, 

∆t = 1 d, being a high risk day, which is 1 − PPoisson(0|λ(t)), that is, 

 

Phighrisk(t) = 1 − e−λ(t)∆t. (3) 

 

The model predicts that the next day, t + 1, will be a high risk day if 

 

Phighrisk(t) > Pthreshold. (4) 

 

4.5 Results 

The Hawkes process model parameter estimation was performed for the training data (years 

2011-2017) at all 40 beaches in the BCRS database. The parameter estimation process 

converged at only 8 of the 40 beaches. They were located in a geographic cluster (see 

Figure 1) and from north to south are Manatee, Coquina, Lido, Siesta, Nokomis, Venice 

North, Venice, and Manasota. The set of parameters are calculated independently for each 

beach, and reported in Table 2. In all the beaches examined, the parameter 
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Beach λ0 α β Pthreshold 

Manatee 0.0027 0.2393 0.3151 0.2932 

Coquina 0.0039 0.3181 0.4016 0.3451 

Lido 0.0054 0.1324 0.2332 0.2600 

Siesta 0.0059 0.2370 0.3700 0.3680 

Nokomis 0.0041 0.1039 0.1218 0.3137 

Venice North 0.0058 0.1457 0.1917 0.3211 

Venice 0.0052 0.1449 0.2404 0.2785 

Manasota 0.0049 0.2219 0.3182 0.3350 

Average 0.0047 0.1929 0.2740 0.3143 

(Standard Deviation) (0.0011) (0.072) (0.094) (0.036) 

Table 2: Estimated values of the Hawkes parameters for each of the beaches considered, listed north to 

south. Units of λ0, α, and β are inverse days, d−1. The bottom rows shows the average parameter value 

(across all beaches) along with the standard deviation. 

β ≈ 0.27 d−1, which suggests a correlation time-scale of β−1 ≈ 3.6 days. A longer probabilistic 

“memory” timescale can be estimated, 

Tm = − log(0.05)/β + 1 (in days), (5) 

which is about 12 days, since a high risk day which happened 12 days ago has a contribution of 

about 5% compared to that of high risk day which occurred 1 day ago. Also of interest is that 

the estimates show that α ≈ 0.2 d−1 for all beaches. This is roughly 103 times the base rate, λ0 

≈ 0.005, for each beach, meaning that a single high risk day after several low risk days 

increases the probability of more high risk days by several orders of magnitude. 

The wind-based and Hawkes process models were applied to the test data at each of the eight 

beaches for which a convergent Hawkes process model was found. For comparison, a 

persistence model is included as a null hypothesis. The persistence model assumes that 

tomorrow will be like today. The results are reported in Table 3. For each beach and each 
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model, the accuracy is reported, or the percent of days for which the respiratory irritation 

risk was correctly forecast. Also given are the false negative rate (also called the miss rate) 

and the false positive rate. 

Considering only the accuracy, the model which performs the best depends on the beach.

 For the two northern-most beaches and Siesta, the Hawkes model is the most 

accurate. For the four southernmost beaches, the wind model performs best. Only at Lido 

does the simple persistence model perform best. But notice that even when a model is the 

most accurate, it might not have the lowest false negative rate, or percent of true high risk 

days that were not predicted. At all but the two northern-most beaches, persistence has 

the lowest false negative rate. At all but one beach (Siesta), 
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Beach and Time-frame Model Accuracy False Negative Rate False Positive Rate 

Manatee, 181 days     

2018-Aug-03 to 2019-Jan-30 Persistence 77% 44% 16% 

 Wind 78% 69% 5% 

 Hawkes 80% 42% 13% 

Coquina, 181 days     

2018-Aug-03 to 2019-Jan-30 Persistence 75% 46% 18% 

 Wind 75% 68% 9% 

 Hawkes 78% 44% 14% 

Lido, 239 days     

2018-Jun-06 to 2019-Jan-30 Persistence 85% 36% 10% 

 Wind 83% 62% 5% 

 Hawkes 83% 56% 6% 

Siesta, 237 days     

2018-Jun-08 to 2019-Jan-30 Persistence 83% 36% 12% 

 Wind 84% 43% 8% 

 Hawkes 85% 46% 6% 

Nokomis, 239 days     

2018-Jun-06 to 2019-Jan-30 Persistence 80% 44% 13% 

 Wind 82% 60% 5% 

 Hawkes 74% 65% 14% 

Venice North, 239 days     

2018-Jun-06 to 2019-Jan-30 Persistence 80% 43% 13% 

 Wind 81% 61% 6% 

 Hawkes 75% 64% 13% 

Venice, 238 days     

2018-Jun-05 to 2019-Jan-22 Persistence 79% 47% 13% 

 Wind 85% 53% 4% 

 Hawkes 78% 59% 11% 

Manasota, 232 days     

2018-Jun-07 to 2019-Jan-30 Persistence 81% 43% 13% 

 Wind 87% 48% 3% 

 Hawkes 78% 57% 11% 

Table 3: For each beach, the percent of days for which the respiratory irritation risk was correctly forecast 

by each model during the dates shown is reported as the accuracy. Also given are the false negative rate 

(also called the miss rate) and the false positive rate. 

the wind model has the lowest false positive rate (predicting a high risk day which is in fact low 

risk). 
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The self-excitation behavior characteristic of the Hawkes process can be seen in the example 

of Coquina Beach, Figure 7. The probability of the 

 

Figure 7: For Coquina Beach, Manatee County, Florida, the days of actual high respiratory risk level are shown, and 

several 1-day forecast models, during the red tide respiratory irritation episode that began August 2018. The 

probability of a high risk day using the Hawkes process model is shown at top. The flat black line represents the 

threshold. When the probability of a high risk day exceeds the threshold, the day is forecast as a high risk day. 

Otherwise, it will forecast as a low risk day. The Hawkes model performs best in this case. The wind-based and 

persistence models are shown for comparison. 

275 

following day being high risk is a function of all actual high risk days in the recent past. When the 

probability exceeds the threshold, the model predicts the following day will be high risk day. For 

this beach, the Hawkes model had the highest accuracy. The wind and persistence models are 

shown for 
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Figure 8: Same data as in Figure 7 but for Venice Beach, Sarasota County, Florida during the red tide respiratory 

irritation episode that began June 2018. The wind model performs best in this case. 

comparison. Results for Venice Beach are also shown, an example where the wind model had the 

highest accuracy, in Figure 8. 

 

4.6 Discussion 

The BCRS has accumulated a significant amount of data since its launch in 2006. In the absence 

of a more sophisticated first-principles-based forecasting system, the historical data could be 

utilized to provide a near-term beach-level forecast at the locations considered. For forecasting 

the beach-specific respiratory irritation risk level one day ahead of time, all the models perform 

similarly during the 2018-2019 RT respiratory irritation episode, between 75% and 85% accuracy 

(see Table 3). The simple persistence model (tomorrow will be like today) does rather well, near 

80% accuracy, and at one beach (Lido), was the best performer. 

The wind-based model is the most accurate for half the beaches for which a model was developed. 

All were geographically located near each other, in the southern part of Sarasota County. 
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Interestingly, the probabilistic self-exciting Hawkes process model, which does not contain wind as an 

input, outperforms the more intuitive wind-based model at nearly half of the beaches. Fortuitously, 

there were enough events to get numerical estimates for the parameters of a univariate Hawkes 

process, but not enough for a multivariate analysis (i.e., including wind data). With additional data 

containing high-risk events, adding wind data to the Hawkes process model may be possible. That 

is, a hybrid of the models considered here could potentially improve accuracy, but the amount of 

historical data available to train the model would need to increase significantly. 

 

Limitations. The given models do not predict when a RT bloom will occur, or when a RT respiratory 

irritation episode will occur at any given beach. However, when a RT respiratory irritation episode does 

begin, the models provide a method for forecasting the respiratory irritation risk for the next day, based on 

the recent risk history. 

Data for all 40 beaches goes back only to December 2011. The total number of high risk days 

during the 2,193-day training period ranges from a low of zero to a high of 46. Among the eight 

beaches for which a model was developed, high risk days account for only about 1% of the training 

period. This is very little data for which to train a model. With more data, the Hawkes and 

wind models may improve. 

Data from different blooms were lumped together to get enough data to train the models. Yet RT 

blooms are known to be patchy and highly variable from bloom to bloom. Thus, the training data 

may combine behavior from different blooms with different dynamics. This is a limitation of the 

data set used. 
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To simplify the modeling, the four-tiered respiratory irritation scale was coarsened into a two-tiered 

risk scale (Table 1). Ideally, respiratory irritation could be measured on a continuous scale, using 

for example sensors for automatic cough detection and counting at beaches. Modeling of a 

continuous variable would increase the number of available data-driven modeling methods. 

 

4.7 Conclusions 

The Beach Condition Reporting System which has been operational forover decade, has 

accumulated a wealth of data. In particular, red tide-induced respiratory irritation levels at 

individual beaches have been reported daily over this time period. The analysis performed here 

provides one of the first reports of the statistics of this data set. 

Moreover, beach-level next-day forecasts of the respiratory irritation risk were developed on a 

beach-by-beach basis, if there was enough data in the training set for a model to be developed. 

Training on data from red tide respiratory irritation episodes during the time period 2011-2017, 

only eight beaches had enough data for a model to be developed (i.e., for parameter values for 

the probabilistic Hawkes model to converge). Two types of models provided a forecast of the 

respiratory level 24-hours ahead of time during the extensive red time bloom of 2018-2019, and 

were compared with a simple persistence model. One model was wind-based, using the current days’ 

respiratory level and the predicted wind direction of the following day. The other model was a 

probabilistic self-exciting Hawkes process model, which used as input the record of the recent risk 

history. No single model performed the best at all the beaches. The wind-based model performed 

the best at four of the eight beaches, correctly predicting the respiratory risk level an average of 

84% of the time. At three of the eight beaches, the Hawkes model was the most accurate, 
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accurately predicting the next day’s risk level an average of 81% of the time. At one beach, the 

persistence model outperformed both the wind and Hawkes models, with an accuracy of 85%. The 

accuracy of the Hawkes process model at nearly half the beaches for which a model was 

developed suggests it may be fruitful to consider self-excitation-based approaches in larger-scale 

models of harmful algal blooms. Interestingly, the Hawkes process model does not require water 

samples of K. brevis, nor ocean or wind forecasts, and will likely improve by their inclusion. 

These results suggest that beach-level on-site reports of respiratory irritation are a valuable data 

source, providing an excellent means to forecast the following day’s beach-specific respiratory 

irritation risk at the same location. Moreover, the efficacy of the BCRS suggests that timely and 

regular reports of red tide-induced respiratory irritation level should continue to be supported and 

should be incorporated in operational forecasts used by resource managers and the public. 
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5.1 Abstract 
New information is needed to monitor the distribution and identify emission sources of aerosols. 

Plumes of colored smoke were generated using small smoke emitters, and a series of fixed (ground) 

and mobile (drone) sensors were used to sample and track the plumes at different distances from 

the source. Concentrations of particles 0.5 microns and larger observed with optical particle 

counters (OPCs) ranged from 400 to 27000 cm-3 of air at ground level, with decreasing 

concentrations observed at greater distances downwind from the emitters. An OPC mounted on a 

drone was used to sample the smoke plume at different heights and distances from the emitters, 

with in-plume concentrations of particles ranging from 490 to 21086 cm-3 for three different 

flights. Top-down drone imagery was processed to extract color profiles of the smoke intensity 

using two methods. In the first method, an image-processing algorithm was developed to 

categorize smoke intensity into five different intensity levels using RGB values. This imagery data 

was combined with OPC measurements to match the smoke intensity levels with particle 

concentrations at specific times and distances from the emitters. A neural model was created to 

predict smoke concentrations from RGB drone image-based intensity levels, and the best model 

was able to accurately predict smoke intensity from the measured smoke concentrations with an 

R-Squared of 0.764. The Second method of smoke intensity detection trained a machine learning 

model, Detectron2, classifies and segments the plume in both top-down drone imagery and side-

view imagery (ground-based cameras). Smoke plume intensity within the segmented plume was 

then estimated using hue saturation value (HSV) values. After matching the plume intensity values 

with particle concentrations, a new neural model was developed that resulted in a particle 

concentration prediction equation with an R-Squared of 0.532. This study develops novel 

methodologies for airborne dispersal through image-processing and particle sampling.  This 

information is critical for the development of targeted mitigation strategies to reduce exposure 
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risks and alleviate the adverse effects of aerosol-induced pollution on ecosystems and public 

health. 
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5.2 Introduction 
Aerosols may contain harmful toxins, irritants, pollen, pathogens, or smoke (Pierce et al., 2003; 

Wei et al., 2009). New  techniques are needed to track the sources and transport of aerosols (Wei 

et al., 2009; Esfahlani, 2019; Mommert et al., 2020; Mtz-Enriquez et al., 2020; Taha et al., 2022). 

Insights gained from aerosol tracking may contribute to targeted mitigation strategies to reduce 

exposure risks and alleviate the adverse effects of aerosol-induced pollution on ecosystems and 

public health (Jimenez et al., 2003; Kirkpatrick et al., 2011; Moeltner et al., 2022). In recent years, 

sensors onboard drones (uncrewed aerial systems) have been used to track the movement of 

aerosols in the atmosphere (Esfahlani, 2019; Rahman et al., 2021).  

 

Improved methods are necessary for tracking aerosol plumes as they move through the 

environment (Mommert et al., 2020). Cost-efficient optical particle counters (OPCs) are valuable 

tools for real-time measurement of particle movement (Giordano et al., 2021). For example, OPCs 

can provide insights into airborne particle dynamics within a sampling area (Zhao et al., 2012; 

Wiedensohler et al., 2013), and deliver accurate measurements of both high and low particle 

concentrations under varying weather conditions (Heim et al., 2008; Dubey et al., 2022). 

Integrating OPCs into drone platforms has allowed for the sampling of plumes that are otherwise 

inaccessible or too hazardous for human sampling (Rahman et al., 2021; Bilyeu et al., 2022; 

Hanlon et al., 2022). 

 

High-volume air filter samplers can complement OPC measurements, particularly in situations 

where low concentrations of particles may be observed (Marple et al., 1990; Vincent, 2007).  The 
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increased sampling volume improves the overall effectiveness of monitoring efforts and provides 

a cumulative measurement of particulate matter levels throughout a sample period (Bishop et al., 

2012). Imagery can also complement OPCs, allowing real-time visualization of particle plumes 

and identification  of areas with varying airborne particle concentrations (Ho and Kuo, 2009; Wei 

et al., 2009; Feng et al., 2020).  

 

Visual aerosol tracking is commonly used for smoke detection (Ho and Kuo, 2009; Rahman et al., 

2021), which is crucial for the early identification and monitoring of wildfire movement (Holm et 

al., 2021; Rahman et al., 2021; McClure et al., 2023). Advancements in computer vision and 

machine learning have led to extremely accurate object detection models, which can be utilized 

for smoke detection and analysis, with research employing deep learning architectures such as 

regional-based convolutional neural networks. Visual smoke tracking is typically performed to 

track the movement of wildfire, but additional work is needed to estimate smoke concentrations 

from images (Ho and Kuo, 2009; Frizzi et al., 2016). Some progress has been made in using 

satellite imagery to track smoke and fires.  However, this data is limited to regions within  satellite 

coverage and  often experiences delays  due to the time needed to access the data (Chen et al., 

2022). Images from drones have been used to study plumes of dye in water, and these techniques 

could be applied to terrestrial environments (Powers et al., 2018; Filippi et al., 2021).  While some 

research primarily focused on using the HSV color space (hue, saturation, and value) for smoke 

segmentation in images, the information obtained from this color space can also aid in interpreting 

the relative concentration of smoke plumes (Xing et al., 2015). The saturation channel refers to 

how intense a color is, while the value channel refers to the relative lightness or darkness of a 
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color. Utilizing the saturation and value channels of a smoke pixel can provide insights into the 

concentration of a smoke plume, thanks to the semi-transparent nature of smoke. 

 

Although significant progress has been made in aerosol tracking using individual sensing 

techniques (Ho and Kuo, 2009; Wiedensohler et al., 2013; Crilley et al., 2020), a combination of 

sensors can be used to develop a model which  extracts more information from drone imagery 

alone. This approach reduces the need for deploying multiple sensors within a plume. In this paper, 

we describe a series of release-recapture experiments to track the movement of colored smoke 

from a series of small smoke emitters. We hypothesized that concentrations of aerosols in colored 

smoke (cm-3) can be predicted in the plume by using top-down drone images and side view shots 

from fixed cameras. To test this hypothesis, we conducted drone-based and ground-based sampling 

of plumes of colored smoke at different distances from the source. Empirical data were used to 

validate estimations of plume intensity from processed drone images, and a neural model was 

developed to predict concentrations of aerosols in smoke at different distances from the source. 

Our specific objectives were to: (1) monitor plumes of colored smoke at different distances from 

the source using a series of fixed and mobile sensors under varying weather conditions, (2) evaluate 

the potential for imagery to accurately estimate concentrations of aerosols in colored smoke, and 

(3) create prediction models which can identify plume area and intensity as well determine which 

model provides the most functionality in different use cases. 
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5.3 Methods and Materials 

5.3.1 Study Site 
The study was conducted at Virginia Tech’s Kentland experimental aerial systems (KEAS) 

laboratory in Blacksburg, Virginia (Figure 1). Drone mounted sensors and video footage from a 

drone platform and several ground-based cameras were used alongside ground sensors to 

measure smoke plume intensity. Smoke was produced by setting off smoke emitters (Enola 

Gaye), activated one at a time over a 20-minute period. Smoke was released centrally on the 

KEAS’s runway (Site: 37.197147, -80.578041). Three smoke release periods were sampled for 

20 minutes each. Each emitter contained 50 grams of composition weight, and 18 emitters were 

released during each period, releasing 0.6 g s-1 of particles (Wire Pull Smoke (WP40) - EG 

Products, 2020). During each release, a drone-mounted OPC was used for the first half, followed 

by drone video for the second half. At the sample site, six high-volume filter samplers and three 

OPCs were used in varying layouts to measure the plume intensity (Table 1). 



106  

 
 

 

Figure 1. 3 panels depicting the smoke release experiments. Panel A shows smoke passing over ground 

sampling devices with a drone sampler flying overhead. Panel B shows a different configuration of 

ground sampling devices with high wind speed creating a low plume. Panel C shows the top-down image 

of smoke release as captured by the drone video camera. 

  



107  

 
 

Table 1. 

Sampler ID 
Sample Start 
Time (EDT) 

Sample End 
Time (EDT) 

Distance from 
Base (m) 

Direction 
from Base 

Release 
Period 

Emitters 
Released 

Ed A 11:20 AM 11:40 AM 15 NW 1 18 

Ed B 11:20 AM 11:40 AM 7.5 NE 1 18 

Ed C 11:20 AM 11:40 AM 15 SE 1 18 

Ed D 11:20 AM 11:40 AM 15 NE 1 18 

Ed E 11:20 AM 11:40 AM 25 NE 1 18 

Ed F 11:20 AM 11:40 AM 15 SW 1 18 

Ed A 12:10 PM 12:30 PM 5 NE 2 18 

Ed B 12:10 PM 12:30 PM 10 NE 2 18 

Ed C 12:10 PM 12:30 PM 15 NE 2 18 

Ed D 12:10 PM 12:30 PM 10 SE 2 18 

Ed E 12:10 PM 12:30 PM 10 NW 2 18 

Ed F 12:10 PM 12:30 PM 10 SW 2 18 

Ed A 1:10 PM 1:30 PM 5 NW 3 18 

Ed B 1:10 PM 1:30 PM 10 NW 3 18 

Ed C 1:10 PM 1:30 PM 15 NW 3 18 

Ed D 1:10 PM 1:30 PM 10 NE 3 18 

Ed E 1:10 PM 1:30 PM 10 SW 3 18 

Ed F 1:10 PM 1:30 PM 10 SE 3 18 

OPC A 11:20 AM 11:40 AM 7.5 NE 1 18 

OPC B 11:20 AM 11:40 AM 0 N/A 1 18 

OPC C 11:20 AM 11:40 AM 15 SW 1 18 

OPC A 12:10 PM 12:30 PM 5 NE 2 18 

OPC B 12:10 PM 12:30 PM 10 NE 2 18 

OPC C 12:10 PM 12:30 PM 15 NE 2 18 

OPC A 1:10 PM 1:30 PM 5 NW 3 18 

OPC B 1:10 PM 1:30 PM 10 NW 3 18 

OPC C 1:10 PM 1:30 PM 15 NW 3 18 

DR V 11:30 AM 11:41 AM 0 N/A 1 18 

DR V 12:20 PM 12:29 PM 0 N/A 2 18 

DR V 1:18 PM 1:38 PM 0 N/A 3 18 

DR OPC 11:20 AM 11:25 AM 15 NE 1 18 

DR OPC 12:10 PM 12:16 PM 10 NE 2 18 

DR OPC 1:10 PM 1:15 PM N/A 
Follows 
smoke 

3 18 
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Table 1. Sampler name, start time, stop time, distance, direction from the smoke source, and number of 

smoke emitters released during sampling period is shown for the sampling equipment during the July 6, 

2023, smoke release experiments. Ed refers to the high volume filter samplers. IMP refers to the ground-

based sensors containing OPC and weather sensors. DR V refers to the drone collecting video data. DR 

OPC refers to the drone with the mounted OPC. 

 

5.3.2 Ground-based air particle concentration and weather monitoring 
An integrated sensor system, including weather monitoring and an OPC, was used for ground 

measurements approximately 2 m above ground level (labeled OPC A, OPC B, and OPC C) 

(Bilyeu et al., 2022). Weather data was collected using an Atmos 22 sonic anemometer 

measuring windspeed, wind direction, temperature, and relative humidity at about 1 Hz. The 

impinging device and OPC (Plantower PMS 7003) operated under the same system as described 

for the drone-based particle monitoring system in Bilyeu et al. (Bilyeu et al., 2022). The OPC 

recorded particle number concentrations as the number of particles with diameter over 0.5 µm in 

0.1 L of air, which were then converted to particle number concentrations per cubic centimeter 

(cm-3). The ground sensors differed from the drone-based sensor (DR OPC) only in that they 

were manually started and stopped, allowing longer run times since drone battery life was not a 

limiting factor on the ground-based packages. Sensors were arrayed to mimic a previous 

experiment done for pollen release (Nimmala et al., 2023), as well as a layout downwind to show 

the effects of distance on plume intensity and shape. Six air samplers (Science First High-

Volume Air Samplers) were used alongside the OPCs, positioned approximately 0.3 meters 

above the ground at fixed locations (Table 1). The samplers drew air at 650 L/min onto 

Whatman Grade 1 Cellulose 125 mm, 11 µm pore size filter paper, which collected particles 

from the emitted smoke. 
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5.3.3 Drone-based measurements 
Two different drone platforms were used for tracking the smoke plume: one equipped with an 

OPC and impinging device (DJI Inspire 2, labeled DR OPC), and another equipped with a 

downward facing gimballed camera (DJI Mavic Air 2, labeled DR V). During the first half of 

each smoke release period, the OPC and impinging drone was flown above the ground samplers, 

moving into and out of the plume at a height of 10 meters +/- 30 cm. The sampling setup for this 

drone was the same as described in Bilyeu et al. (Bilyeu et al., 2022). The drone used to capture 

images of the plume was flown 30 meters +/- 30 cm above the smoke release point with the 

camera pointed directly at the ground. The video was recorded in 4k resolution at 120 Hz, 

capturing approximately 10 minutes of smoke release for each release period. 

 

5.3.4 Optical particle counter (OPC) calibration 
The Plantower PMS 7003 OPCs were found to inaccurately measure total particle concentrations 

and sizes when compared to more expensive and reliable instruments such as the Aerodynamic 

Particle Sizer (APS) (TSI Model 3321, Shoreview, MN, United States). In some cases of low 

particle concentrations one OPC would measure twice the concentration of another OPC and be 

significantly different from the values measured by the APS. Polystyrene latex beads with mean 

sizes of 0.8 µm, 2 µm, and 10 µm were chosen to be released in an attempt to calibrate the OPCs 

total and individual bin particle counts (which are reported to sort particles into size bins ranging 

from 0.3-0.5 µm, 0.5-1.0 µm, 1.0-2.5 µm, 2.5-5.0 µm, 5.0-10 µm, and greater than 10 µm 

particle diameter). Utilizing a nebulizer with HEPA filtered air we aerosolized the polystyrene 

latex beads and passed the aerosol through a dryer (TSI Model 3062, Shoreview, MN, United 

States), a Kr85 neutralizer (TSI, Shoreview, MN, United States), and into a 280L chamber 
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(AtmosBag two-hand, size M, Cat. #Z530212, Sigma-Aldrich, St. Louis, MO, United States) as 

per Powers et al.(Powers et al., 2018). Utilizing the APS the true aerosol size distribution and 

concentration were determined.  Air was released into the chamber before the beads were added 

to run an empty bag test prior to each bead release period. Beads were released one size group at 

a time allowing 5 minutes to fill the bag, after which the APS and OPCs began recording data 

during a 3-minute interval collecting 18 samples for each of the three different bead size releases. 

Measurements from the Plantower PMS 7003 OPCs were compared with true values from the 

APS and the Microsoft Excel solver function was utilized to fit the OPC data to the APS data 

(see S. Equation 1-4). 

 

5.3.5 High-volume air filter calibration 
High-volume air filters (labeled Ed A, Ed B, Ed C, Ed D, Ed E, and Ed F) were calibrated by 

releasing smoke directly from the smoke emitters onto the filters for set periods of time---2, 5, 

10, and 15 seconds---replicated three times. High-volume filter samples were collected and taken 

to the lab where five 1 cm cuttings were taken from each sample and soaked in a 1mL 25% 

ethanol solution. The red smoke collected in the filter stained the liquid solution, which was then 

run through a Beckman Coulter DU 800 spectrophotometer (Brea, California, USA) to measure 

absorbance at the peak of 515 nm. Measurements were taken in triplicate and averaged for each 

sample.  
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5.3.6 Data storage and analysis 
Data from OPCs were saved to microSD cards as CSV files and processed in Microsoft Excel to 

remove corrupted data. Excel was also used to convert the raw data to corrected particle 

concentrations for comparison between multiple OPCs. Associations linking particle 

concentration with wind speed, wind direction, and temperature were analyzed in Excel, and 

statistical analyses were performed with JMP Pro Version 16 software (Cary, North Carolina, 

USA). Weather data were saved on the same files as the OPC data and were converted from 0-

360 degrees to a 0-180 degree scale. In this scale, 180 degrees represented the wind blowing 

directly from the source (smoke emitter) toward the sampler, and 0 degrees represented the wind 

blowing directly from the sampler to the source (Figure 2).  

 

Figure 2. The method of wind direction processing for each ground sampler with an attached weather 

sensor. When the wind blew in the 180 degree line from the smoke source to the sampler it was set to 180 

degrees and when the wind blew from the sampler towards the smoke source it was set to 0 degrees. Each 

direction had a range of 1 to 180 degrees. Crosswinds from either direction would be 90 degrees. 

 



112  

 
 

Two methods were used to process the drone imagery (videos) both utilizing Adobe Media 

Encoder 2024 (San Jose, California, USA) software to convert the video into still frames. The 

technique of extracting color intensity was similar to that done by Filippi et al. (Filippi et al., 

2021) when they released colored dye into the ocean to track surface drift. In the first method the 

frames were further analyzed using an in-house MATLAB code (supplemental code 1) to 

determine the relative intensity of the smoke plume. The analysis used the red values of each 

pixel, creating four different intensity levels based on the difference between red values and 

green and blue values. The intensity levels were categorized as 4, 3, 2, and 1, corresponding to 

differences of 100, 50, 20, and 10, respectively. These bins were chosen as they were found to be 

the most consistently correlated with measurements taken from out OPCs, with greater numbers 

of bins decreasing the accuracy of matching intensity level to particle concentration. By 

matching the time stamps of the OPC data and the video recording of the smoke plume, we 

created a range of particle concentrations for each intensity level from images extracted from the 

drone video. OPC concentrations were matched with the plume intensity as measured by the 

sensors, and values were sorted into concentrations for each intensity level. The average 

concentration and standard deviation were determined using Microsoft Excel and JMP software. 

 

The second method took the still frames and utilized the implementation of a machine learning 

model Detectron2, an open-source object detection and segmentation model developed by 

Facebook AI Research, to segment the smoke plumes(facebookresearch/detectron2, 2024). This 

method employed a Mask R-CNN model with a ResNet-50 backbone and Feature Pyramid 

Network, pre-trained on the COCO dataset and fine-tuned for smoke plume segmentation. 

Randomly picked images from cameras placed around the smoke release area were used for 
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training and validation and were prepared using COCO format annotations and registered with 

Detectron2’s catalogs. The model was trained with Detectron2’s DefaultTrainer with parameters 

including a learning rate of 0.00025 and 1000 iterations. A smoke concentration visualization 

function was implemented using OpenCV. To estimate smoke plume intensity the segmented 

plume image was converted to the HSV color space and a mask for reddish hues within the 

plume was applied. We then extracted the averages of the saturation and value channels for 

interpretation of the intensity of the smoke. Afterwards, we applied a Gaussian blur for smoother 

results and generated a corresponding heatmap for varying intensities within the plume. This 

method involves using a continuous color bar for the corresponding intensities, specifically a 

range of values from 0-255 since this was OpenCV’s default range. 

 

JMP 16 Pro software was used on data collected from ground OPCs along with matching smoke 

intensity levels to create prediction models for smoke intensity levels and for particle 

concentrations. Smoke intensity level was read at one pixel near to each ground OPC during the 

entire release periods. By using the neural modeling JMP software the smoke intensity levels 

from one sensor were used as an input for determining the particle concentrations measured by 

said sensor. Another model was created using smoke concentration to determine smoke intensity 

level utilizing the same measured pixels and OPC measured concentrations. A third model was 

created using the value and saturation of pixels measured near to the OPCs and one set was 

utilized to predict particle concentration at the OPC. The models were made by using the neural 

modeling 3 node TanH model provided in the JMP 16 Pro software. In each instance the model 

was trained on 1/3 of the data set and contained 1 hidden layer. 
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5.4 Results 
The smoke release experiments were performed on 6 July 2023 involving three release periods of 

18 smoke emitters, each release period lasting approximately 20 minutes. The release periods 

began at 11:20 AM, 12:10 PM, and 1:10 PM. During these times, three ground-based OPC and 

six high-volume air filter samplers collected data continuously. During the first approximate 10 

minutes of the smoke release a drone mounted OPC was in flight sampling the smoke plume, and 

during the second approximate 10 minutes of the smoke release a drone was flown 30 meters 

above the smoke release to capture video of the sampling space. Ground-based cameras also 

collected captured video of the sampling space. 
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5.4.1 Ground particle concentration measurements 

 

Figure 3. The correlation between wind speed and direction with the particle concentration measured 10 

meters from the smoke plume source. Higher concentrations are associated with wind direction blowing 

the plume towards the sampler, and lower wind speeds are associated with higher particle concentrations 

when the wind is not directly towards the sampler. 

 

During all of our sampling periods, wind speed and wind direction were correlated with particle 

concentration (Figure 3). However, wind direction had a more significant impact on particle 

concentrations, with the effect of wind speed being overshadowed. Background particle 

concentrations ranged from as low as 400 cm-3 outside the smoke plume to peaks reaching the 

sensor’s maximum of 27000 cm-3 within the highest intensity of the plume. When looking at our 

downwind OPC orientation in release period 2 and 3 the closest OPC (OPC A) had a range of 

400-27000 cm-3, the middle OPC (OPC B) had a range of 400-19000 cm-3 while the farthest 
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OPC (OPC C) had a range of 400-26400 cm-3. We can see differences in plume intensity shown 

in OPC measured values as well as plume intensity readings when looking at combined video 

and OPC data (Figure 4). The background particle concentration level was chosen by using the 

measurements of OPC A, OPC B, and OPC C when not in the smoke plume and was determined 

to be less than 1000 cm-3. During release period 2 and 3 the value reported by the closest OPC 

averaged 9539 cm-3 for the reported seconds above the background particle concentration (229 of 

1603 or 14.3%), the middle OPC averaged 7903 cm-3 for the reported seconds above the 

background particle concentration (187 of 1606 or 11.6%), and the farthest OPC averaged 9230 

cm-3 for the reported seconds above the background particle concentration (89 of 665 or 13.4%). 

Particle concentrations greater than 20000 cm-3 during release periods 2 and 3 were reported by 

the closest OPC for 70 of 1603 (4.37%) seconds and the farthest OPC for 11 of 665 (1.65%) 

seconds. 

 

Figure 4. Optical particle counter measurements to have higher concentrations of smoke the closer the 

sensor was to the plume source, as seen with OPC A having a higher concentration of particles than OPC 

B despite similar smoke intensity levels. 
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5.4.2 High-volume filter measurements 
Our equipment was arranged to capture upwind, sidewind, and especially downwind directions. 

However, the wind direction changed during the sampling period, often resulting in the 

crosswind setup receiving the majority of the smoke plume. Distance from the plume source also 

appears to impact plume intensity, with sensors closer to the source recording higher 

concentrations than those farther from the smoke plume source (Figure 5). This is seen 

particularly clearly in the absorbance measured in the high-volume filter samples where during 

release period 1, Ed B, Ed D, and Ed E were downwind at 7.5, 15, and 25 meters, respectively. 

We see Ed B had 0.24 absorbance, Ed D had 0.18 absorbance, and Ed E had 0.12 absorbance. A 

similar downward trend was also seen in release period 2 and 3 where Ed A, Ed B, and Ed C 

were downwind at 5, 10, and 15 meters, respectively. Ed A had 0.14 absorbance, Ed B had 0.10 

absorbance, and Ed C had 0.06 absorbance during sampling period 2 and Ed A had 0.11 

absorbance, Ed B had 0.04 absorbance, and Ed C had 0.0 absorbance during sampling period 3. 
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Figure 5. The absorbance measured from each of the 6 high volume samplers. R1 refers to the first sample 

period, R2 the second sample period, and R3 the third sample period. In R1 Ed samplers B, D, and E were 

downwind at 7.5, 15, and 25 meters, A and F were crosswind at 15 meters and C was upwind at 15 

meters. For R2 and R3 Ed samplers A, B, and C were downwind 5, 10, and 15 meters, D and E were 

crosswind at 15 meters, and F was upwind at 15 meters. We see as distance increased for our downwind 

samplers that absorbance decreased, meaning less exposure to smoke was measured as the distance from 

the plume increased. 

 

5.4.3 Drone measurements 
5.4.3.1 Drone optical particle counter measurements 

During the first two releases, the drone was flown above a downwind ground sensor. Weather 

conditions, such as low wind speed, caused the drone OPC to show higher concentrations of 

particles simultaneously with the ground OPC. However, under high wind speeds, the smoke 

plume went below the drone-mounted OPC, resulting in increased concentrations at ground level 
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but not in the air 10 meters above (Figure 6). Specifically, the drone-mounted OPC measured an 

average particle concentration of 4084 cm-3 under wind speeds 0.1 to 1 m/s, and 2155 cm-3 under 

wind speeds 1 to 2.7 m/s, respectively. Wind speeds measured from 0.1 m/s to 2.7 m/s. When 

flying the drone into and out of the smoke plume, we observed clear spikes in particle 

concentrations that could be matched with video footage taken from the ground.  

 

Figure 6. A side view of a period when the drone mounted sensor (DR OPC) was flying above OPC C 

(12:14:32 PM July 6th, 2023). OPC C is within the plume while the drone sensor was above the plume, 

which is shown by a high concentration measured from OPC C and a much lower concentration measured 

from the drone mounted sensor. 

 

5.4.3.2 Drone video 

For the RGB image processing we saw that the interior of the plume close to the source showed 

the highest intensity, while the outside of the plume near to the source showed the lowest 

intensity (Figure 7). As the plume expanded downwind, the intensity level decreased throughout, 

with even the interior of the plume showing lower levels of intensity (Figure 7). The video 

struggled to capture areas of the plume with very low intensity, causing the edges of the plume to 

be unmarked by the image processing program. 
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Figure 7. The smoke plume as seen from above by the drone processed into 4 different intensity levels. 

The edges of the smoke plume near to the source can be seen to be level 2 with the center being level 4. 

As the distance from the source increased, the center of the plume intensity level tapered off from level 3 

(at OPCs A and B) to level 2 (at OPC C), to level 1 before no longer being detected. At the furthest extent 

of the plume the center was only intensity level 2 with an outside edge of level 1. 
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5.4.4 Combined drone image and ground concentrations 

 

Figure 8. 4 panels of processed smoke images as seen from above along with the associated optical 

particle counter concentration measurements (cm-3). In the top left panel, the edge of the smoke plume 

intersected with OPCs A and B. In the top right and bottom left panel, the smoke plume engulfed all 3 

OPCs with higher intensity levels on OPCs A and B. In the bottom right panel, the plume drifted away 

from OPC A. As the plume ascended, OPC B was fully covered, and OPC C was partially covered. 

 

The drone video was processed to show smoke intensity levels from a top-down view, which was 

matched with spikes in OPC concentrations measured on the ground (Figure 8). Intensity levels 

were determined by reading RGB pixel intensity at each ground sensor location and matching the 

determined intensity level with OPC concentrations during release period 2. For each intensity 

level the average particle concentration as measured by all OPC sensors was calculated. The five 

intensity levels were associated with specific average particle concentrations:  

Intensity level 0 – 1012 cm-3 

Intensity level 1 – 4024 cm-3 

Intensity level 2 – 8026 cm-3 
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Intensity level 3 – 12311 cm-3 

Intensity level 4 – 17956 cm-3 

 

There were periods when the OPCs recorded higher particle concentrations, but the video 

processing would not identify the plume as being over the OPC. This indicates that, while the 

video can broadly track the smoke plume, it struggles to detect lower concentrations at the edges. 

When attempting to utilize the plume intensity code on images taken from the side of the plume 

the smoke was not accurately identified and labeled. This leads to the video analysis using RGB 

to struggle to determine the height of the plume as it can only track the two-dimensional 

horizontal movement of the smoke.  
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Figure 9. 2 sets of processed smoke images as seen from above along with the associated optical particle 

counter concentration measurements (cm-3) overlaid on the left image. In the top left and bottom left the 

smoke plume was divided into smoke intensity bins based on the relative red intensity of the RGB readout 

of each pixel. In the top right and bottom right panel, the smoke plume was measured by average 

saturation and the value of each measured pixel was displayed as a continuous color gradient. 

 

Utilizing the same images processed for red color intensity we can also process for saturation 

and value of pixels within the detected plume area. When we mapped the average saturation and 

value channels to the smoke plume, we were able to detect higher resolution plume density than 

was visible with just the red value smoke intensity levels (Figure 9). Mapping the saturation and 

value was also possible for side view imagery of the smoke plume (Figure 10) showing how the 

plume behaves both horizontally and vertically. 
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Figure 10. The processed side (top) and top-down (bottom) view of the smoke plume. Processed images 

had the plume identified via a trained Detectron2 AI and the plume density was color mapped using the 

averaged saturation and value read at each pixel within the plume. 

 

5.4.5 Image-based predictive model for concentration 
Using JMP 16 software we were able to train a neural network model to predict particle 

concentrations at a single ground OPC (OPC B) from the color intensity measured by the RGB 

smoke intensity processed drone imagery. The five model predicted concentrations are shown 

below: 

Intensity level 0 – 1143 cm-3 

Intensity level 1 – 4323 cm-3 
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Intensity level 2 – 8235 cm-3 

Intensity level 3 – 12042 cm-3 

Intensity level 4 – 16144 cm-3 

 

These results had an R-Squared value of 0.612 for the training data and 0.559 for the validation 

data (Figure 11).  

 

Figure 11. The training and validation predicted vs actual plots for the particle concentrations measured 

by the OPC and predicted by the neural model trained with smoke intensity data. These results had an R-

Squared value of 0.612 for the training data and 0.559 for the validation data. 
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A model using ground OPC (OPC B) data to predict the smoke intensity level (as determined by 

RGB image processing) was more accurate with an R-Squared of 0.661 for the training data and 

0.764 on the validation data. The neural model was accurately able to sort 239 of 314 training 

samples and 119 of 158 validation data points. (Table 2). 

 

Training Data 

Actual Predicted Count 

Intensity 

Level 

0 1 2 3 4 

0 188 7 0 5 0 

1 19 13 0 5 0 

2 12 8 9 3 0 

3 11 0 0 29 0 

4 0 0 0 5 0 

 

Validation Data 

Actual Predicted Count 

Intensity 

Level 

0 1 2 3 4 

0 96 1 0 3 0 

1 9 7 0 3 0 

2 4 4 7 1 0 

3 1 0 0 19 0 

4 0 0 0 3 0 

Table 2. Training and validation data for the model predicting smoke intensity level using particle 

concentrations as inputs. 

 

JMP 16 software was used to train a neural model to create a prediction equation to determine 

particle concentration by utilizing top-down imagery and reading the averaged saturation and 

value of pixels near to the ground sensor OPC A during one release period. The empirical 

prediction equation produced a model that had an R-Squared of 0.532 and a validation prediction 

R-Squared value of 0.382 (Figure 12). The hidden node equations and prediction equation are as 

follows: 

H1 = tanh (1.443 – 1.020SV)       (1) 

H2 = tanh (10.296 – 12.471SV)      (2) 

H3 = tanh (-1.785 + 4.507SV)       (3) 

Theta = 754855.512 + 777687.745H1 – 1349246.363H2 + 86676.265H3 (4) 
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Where H1, H2, and H3 are the hidden node equations and Theta is the prediction equation giving 

particle concentration in cm-3 as the output. Tanh is the hyperbolic tangent function, SV is the 

measured average saturation and value read from top-view images at the location closest to the 

OPC that could be measured accurately.  

 

 

Figure 12. The training and validation predicted vs actual plots for the particle concentrations measured 

by the OPC and predicted by the neural model trained with the averaged saturation and value 

measurements of pixel readings taken near the OPC as seen by the drone video. The empirical prediction 

equation produced a model that had an R-Squared of 0.532 and a validation prediction R-Squared value 

of 0.382 
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5.5 Discussion 
Aerosol tracking plays a pivotal role in understanding the complex dynamics of airborne particles 

and their impacts on environmental and human health (Cheng et al., 2007; Esfahlani, 2019). 

Tracking aerosols enables researchers to quantify their spatial distributions, identify emission 

sources, and assess their transport pathways (González-Rocha et al., 2022). By understanding 

aerosol behavior, scientists can develop targeted mitigation strategies to reduce exposure risks and 

mitigate the adverse effects of aerosol-induced pollution on ecosystems and public health (Fleming 

et al., 2005a; Zhao et al., 2012). We used a combination of ground-based and drone-based sensing 

to measure smoke plume intensity. Our study showcases the strengths and weaknesses of multiple 

aerosol tracking devices and provides a novel way to determine smoke concentration using only 

video or images of the smoke plume. 

 

Ground sensors showed a range of particles from 400-500 cm-3 to 27000 cm-3, with distance from 

the smoke source being the greatest predictor of highest peak smoke intensity. Measurements taken 

inside the plume were done with OPCs and high-volume filter samplers, which is consistent with 

smoke measurements done in studies like Wang et al. (Wang et al., 2020) and Zhang et al. (Zhang 

et al., 2017). Our results showed that OPCs can consistently with each other measure both high 

and low particle concentrations, even under varying weather conditions. When sensors are arrayed 

around the particle source, measurements reveal which criteria produce higher or lower particle 

concentrations, allowing for predictions of particle movement in the sampled area (Prank et al., 

2013; Hecker et al., 2022). There was a similar percentage of particles measured above background 

levels at the close and far OPC (14.3% and 13.4%) the highest concentrations (above 20000 cm-3) 

occurred more than 2.5 times as often at the closest OPC when compared to the farthest OPC, 
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having 4.4% and 1.7% of the time spent in the highest concentration of the plume. This is 

consistent with the greater spreading of the smoke plume and the exposure time of the sensors(Ho 

and Kuo, 2009; Mommert et al., 2020). We observed concentrations ranging from 400 cm-3 to 

beyond the sensor maximum of 27000 cm-3.  

 

A decreasing concentration of collected smoke was observed with the high-volume filter sampling 

as the distance from the source was increased. We utilized high-volume samplers to see the effect 

of distance and smoke exposure time over the entire smoke release period. We observed higher 

levels of absorbance from samples collected from samplers closer to the source and from those 

with more exposure time to the plume. High-volume air filter samplers are useful for 

supplementing measurements and detecting lower concentrations that may be missed by OPCs 

(Sang-Nourpour and Olfert, 2019). While high-volume samplers lack the temporal resolution of 

OPCs, they provide an average over a longer period, showing which areas received the most 

aerosol exposure on average more precisely than averaging OPC measurements. High-volume 

filter samplers can collect a much larger parcel of air than OPCs and can potentially detect lower 

concentrations of exposure that OPCs might miss (Marple et al., 1990; Enamorado-Báez et al., 

2015). These samplers are best utilized when looking for low concentrations of aerosols, where 

the specific timing and movement of particles are less important. 

 

Drone mounted OPC results showed high sensitivity to in and out of plume measurements, with 

particle concentrations jumping as soon as the drone moved into the plume, going from levels as 

low as 400 cm-3 to as high as 3334 cm-3 in only one second, and reaching a peak of 17000 cm-3 
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within 10 seconds. OPCs are excellent for capturing aerosol plume movement with second-to-

second accuracy (Crilley et al., 2020; He et al., 2020). By matching drone OPC measurements 

with the OPC on the ground we can see the difference in plume density at different altitudes 

downwind from the smoke emission source. In most cases we saw lower concentrations measured 

by the drone than by the ground OPCs. During the second release period the drone had an average 

concentration reading of only 513 cm-3 while the ground sensor below averaged 1741 cm-3. The 

drone was observed often as being at the edge of the plume, which would be less concentrated than 

the ground sensors which would occasionally be in the center of the plume. Only having one drone 

operator limited our ability to take drone video and drone OPC data simultaneously. As such, the 

drone concentrations cannot be matched with smoke intensity levels determined by the drone 

video. 

 

Drone video collected from above the smoke source was able to be processed to reliably track 

smoke movement and intensity with 5 different intensity levels. The red ratio of pixels from the 

RGB color space in images extracted from the drone video was chosen to be used as the smoke 

release was performed using a red smoke emitter. We were able to track the movement of the 

plume over time and identify areas exposed to higher and lower concentrations at any given 

moment. Smoke intensity was sorted into bins with intensity level 0 at 1143 cm-3, intensity level 

1 at 4323 cm-3, intensity level 2 at 8235 cm-3, intensity level 3 at 12042 cm-3, and intensity level 

4 at 16144 cm-3. Smoke tracking through video has been used for wildfires and industrial 

pollutants, but matching these results with other sensors is less well described (Mommert et al., 

2020; Rahman et al., 2021; Chen et al., 2022; McClure et al., 2023). We found that video 

tracking from directly above could not determine the height of the smoke plume, leading to 
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inconsistencies between ground sensors and video analysis. Previous studies have shown that 

resolving  three-dimensional smoke plumes is challenging, especially when background 

conditions are not uniform, which can cause the tracking to miss plume movement through 

differently colored areas (Zhao et al., 2012; Gagliardi and Saponara, 2020; Gupta et al., 2021). 

Although we successfully created a smoke tracking program for the release runway where 

experiments were conducted, the smoke could not be tracked across the grass beyond the 

sampling area for the RGB smoke intensity levels. This limitation restricts our implementation of 

visual smoke tracking to areas with more consistent terrain and aerosols that can be visually 

distinguished from the background using this method. However, the HSV tracking was able to 

track the aerosol over the grass as well as different backgrounds seen from the side view. When 

utilizing the RGB color model to track the smoke plumes our restriction of top-down drone video 

only allowed the ability to analyze the smoke plume in a method limited to treating the 30-meter 

space between the release point and our drone as a 2-dimensional space. This simplified way of 

observing the plume will treat plumes of greater height the same as plumes of greater density. 

Therefore our visual smoke tracking implementation is most effective when the aerosol is clearly 

visible, relatively flat along the horizontal plane, and horizontal movement needs to be measured 

(Ho and Kuo, 2009; Zhao et al., 2012; Zhou et al., 2016). By utilizing drone and ground imagery 

processed to determine plume density using saturation and value within the trained AI plume 

detection we were able to track smoke density continuously from above and beside the smoke 

plume (Figure 10). This is the first step in creating a three-dimensional model of the plume 

movement and could be utilized to help understand smoke or invisible aerosol movement. 
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Drone video data was combined with OPC concentrations to match the smoke intensity levels with 

particle concentrations at specific times. A single pixel was used to match as closely to the position 

of the OPC as possible to read conditions the OPC would experience, and one OPC was used for 

each model to reduce the effects distance from the plume source may have had on the measured 

conditions of the plume. Utilizing the combined data, a neural model was created in JMP 16 

software which is capable of predicting smoke concentrations from the video intensity and is 

capable of predicting the smoke intensity from the reported smoke concentrations. Using the RGB 

intensity levels, the model is only able to predict a set concentration for each intensity level giving 

an R-Squared value of 0.612 for the training data and 0.559 for the validation data. However, this 

prediction value is similar to the average particle concentration measured at each intensity level 

and does not provide much extra utility. Since this model only predicts one value for each intensity 

level it is of limited use for giving as single estimate of particle concentrations for each intensity 

level and suffers from high levels of variance at the higher levels of concentration, in some cases 

seeing differences in the real and predicted values of more than 10000 cm-3. This technique is 

novel as well as informative as it provides a way to determine the particle concentrations without 

needing to measure in the plume (Mommert et al., 2020; Mtz-Enriquez et al., 2020). A finer 

resolution of concentrations is preferred, but with only 5 input levels the model is only capable of 

producing 5 output levels of concentration.  However, this data can be utilized more effectively to 

train a model to predict smoke intensity level from the measured particle counts using JMP 16 

software. The neural model was capable of sorting 76% of training samples and 75% validation 

data points correctly into different smoke intensity levels. This shows the intensity bins are 

correlated with the smoke concentrations and one can create predictions in both directions with 

the collected data. To address the lack of resolution in the RGB color to particle concentration 
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model, another model was made using the averaged saturation and value recorded from pixels near 

to OPC A in the drone video. By utilizing the averaged S and V components of the pixel values 

this allowed for a continuous scale from 0 to 1 to map to the particle concentrations. The 

continuous scale allows for more precise predictions of particle concentrations in the air than the 

5 levels provided by the bin model and has an R-Squared value of 0.532 for the training data set 

and 0.382 for the validation training data set. While the HSV model gave a lower fit than the RGB 

intensity model the HSV model gives values continuously as an output which may make it better 

to define higher resolution scales of plume shape and density. Both the RGB and HSV models 

were unable to address the plume height vs density problem created by a lack of adequate 3-

dimensional tracking of the plume movement due to the sole data source being the top-down drone 

video. Despite this inadequacy both models provide potential for the tracking of plume movement 

when combined with other sensing equipment.  

 

Validated OPC sensing methods are necessary alongside video tracking of visual aerosols and as 

standalone tools for tracking invisible aerosols. Additional work is required to better understand 

how to integrate these sensing systems for aerosol tracking (Wei et al., 2009; Vaidyanathan et al., 

2018). Current aerosol tracking methods, such as wildfire smoke tracking, utilize particle sensors 

and visual smoke detection, but are mostly focused on large-scale or long-distance measurements 

(Krüll et al., 2012; Gupta et al., 2021). The potential of video particle tracking of not just the plume 

size and shape, but also density is not fully explored and could be crucial for understanding the 

movement of aerosol plumes above traditional sensing regions (Esfahlani, 2019; Chen et al., 2021; 

Rahman et al., 2021). Our study examines a controlled smoke release on a smaller scale, 

demonstrating that OPCs can be used on the ground or mounted on drones to train a model which 
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can accurately track aerosol plumes with high temporal and spatial resolution. Future studies 

should include flying a drone-based sensor alongside a top-down video to determine the plume 

height, which cannot be determined accurately with just the top-down video. By combining the 2 

drone sampling approach with an array of ground cameras the smoke plume dimensions, intensity, 

and concentration could be tracked in 3 dimensions and through time as the plume dispersed. This 

approach would also help elucidate the vertical movement of the plume, providing better insights 

into the plume’s path under different weather conditions. 
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Chapter 6. Conclusions and Future Directions 
This research has shown that levels of HAB-associated particles can be quantified and predicted 

using a combination of sensing and modeling techniques. Weather impacts the rate of aerosolized 

particles produced, and the location those particles will ultimately be transported. Microorganisms 

collected from the water and the air displayed morphological similarities indicating the source of 

the organisms in the air to likely be from the HAB experiencing lake. Using lightweight and 

relatively cheap OPCs, particle counts were accurately measured in an effort to predict HAB 

aerosol levels. There was a strong correlation between weather effects and measured particle 

counts which allowed for the prediction of HAB aerosol levels with weather forecasts. With a large 

amount of beach condition data collected across a wide geographic area, HAB aerosol effects on 

beach goers can be predicted and potential exposure warnings can be recommended. Drone 

mounted sensors tested here as a way to collect particle data for HABs can also be utilized in other 

applications such as the tracking of pollen, smoke, pathogens, or other particles that only have part 

of the information gathered from ground sensing. The ability of drones to take measurements at 

different altitudes highlights the differences between what is measured at ground level and what is 

occurring above (González-Rocha et al., 2020), and these differences can have influences on the 

long-distance transport of aerosols. 

In the future, sampling could be done at more lakes and beaches that experience recurring HABs. 

By utilizing cost-effective OPC and weather stations the sampling area could be constantly 

monitored for indications of HAB aerosol activity. Our sampling was limited to three lakes and 

two ocean beaches. Collection of air and water samples along with weather and particle count data 

could be used to create a local model to predict conditions which would cause higher levels of 

HAB aerosols. Larger data sets, like the Mote Beach Conditions Reporting System (BCRS) which 
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includes thousands of observations across more than 75 beaches, could be combined with collected 

weather and particle count data to make more robust prediction models for HAB exposure. 

Eventually, with enough collected data from lakes and beaches a general prediction model could 

be created to determine HAB aerosol likelihood at any known HAB site. 

HAB tracking and mitigation are important to people and there is a willingness to pay for these 

services (Moeltner et al., 2022). By offering low cost OPCs and weather sensors which can be 

mounted permanently or temporarily in an at-risk area, people will be safer and more likely to 

enjoy these beach and lake spaces at times when toxin exposure risk is low. Current HAB reports 

are rarely predictive, and many may not even know to look for the signs of a HAB if there is not 

adequate reporting (Smith et al., 2014). With better sensing techniques and predictive capabilities, 

we will be able to determine high and low risk areas of HAB aerosol exposure at individual beach 

or county level. With better predictive capability, affected people will have access to information 

regarding health risks associated with their homes or recreation areas. By  increasing knowledge 

and awareness about HABs people can be motivated to avoid more dangerous areas and potentially 

change habits that lead to increased instances of HAB occurrence (Hathaway et al., 2012).  

Drone-based sensors are not limited to external sensing devices attached to the drone. We show 

that drone cameras can be utilized to track visible aerosol plumes. With future work tracking 

plumes via combining data collected from drone cameras and ground-based cameras a 3 

dimensional model of plume movement is possible (Krüll et al., 2012; Gupta et al., 2021). By 

better understanding the visual plume movement and corresponding measurements from ground 

and drone-based OPC data plumes of non-visible particles could also be tracked using a 

combination of ground and drone sensors in an array around suspected plume sources. By 

matching the OPC data from multiple sensors with the known plume intensity levels, we could 



137  

 
 

create a map of plume movement without being able to visually identify the plume. This could be 

particularly useful over larger areas to determine where potentially dangerous plumes of aerosols 

are transported and what areas will be most impacted (Kirkpatrick et al., 2010). 

Targeting sensor placement to HAB likely water bodies could be done through satellite imagery 

detection and bloom prediction models (Ahn and Shanmugam, 2006; Glibert et al., 2010). 

Watershed characteristics can be used to model HAB likelihood for different lake systems (Weber 

et al., 2020). Models can be checked against known HAB sites and may help determine at risk 

HAB locations.  Better HAB targeting with the use of lightweight and cost-effective sensors 

mounted on drones or permanently on shore would provide invaluable data about the fluctuations 

of HAB aerosol production and transport. A HAB lake prediction model would also allow for the 

prevention of new HABs by providing insight into what development changes would best mitigate 

HAB formation in at-risk lakes. Measures could be taken to prevent a lake from becoming a HAB 

site that would occur without action due to climate change induced land use fluctuations (Bethke 

and Nudds, 1995; Álvarez et al., 2017). 

The questions of each objective outlined in the introduction to this document were addressed by 

the research conducted in each of the main chapters outlining work that has been published or in 

in progress towards publication as scientific literature. These chapters work towards the overall 

goal of characterizing the influence of weather phenomenon such as wind speed, wind direction, 

and temperature on measured aerosol levels above and around HABs. This was done by taking 

measurements using ground and drone mounted sensors along with water and air sampling 

techniques. Objective one, looking to explore associations between measured weather conditions 

and the particle counts measured above and beside active HABs and HAB sites found relationships 

between weather and particle concentrations that were able to be predicted with statistical neural 
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modeling. Objective two, looking to create a model to predict concentrations of particles associated 

with HABs in the air at downwind sites was able to successfully predict particle concentrations on 

the shore of both lake and ocean HAB events. Objective three, looking to create a model to predict 

what location will have high levels of HAB aerosols found beach level HAB intensity forecasting 

was possible using current conditions along with future weather forecasts. Objective four, looking 

to combine visual smoke tracking with weather and particle measurements to improve particle 

behavior predictions found that aerosol plumes could be track visually through drone and ground 

cameras alongside traditional air quality sensors to improve tracking capabilities of aerosol plumes 

both visible and invisible. Overall this work ties together weather and particle concentrations 

associated with HABs helping to define the ways weather influences HAB aerosols.  
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