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Optimal Control of Structural Dampers
Shibabrat Naik, Nicholas Sharp, Shane Ross

Abstract—Deformation due to wind is a significant obstacle in
the design of tall buildings. Many large buildings include dampers
in their upper floors to counteract oscillation due to wind, and
recent designs permit controlling the damping properties of these
weights with magnetorheological fluids. In this study, we consider
the optimal control of these dampers. Our metric of interest
is chosen to minimize tenant discomfort from lateral sway on
the topmost floors of the building. A kinematic model for the
building is proposed and stochastic descriptions of the wind
are used to provide dynamic loading. We demonstrate that this
formulation structures the optimization problem as a Markov
Decision Process. A dynamic programming optimization scheme
is developed to compute optimal control trajectories for the
system, although computational complexity limits the method in
practice. We present a summary of these techniques as well as
preliminary results of the method.

I. INTRODUCTION

High rise and flexible structures are now a part of every
developing region for their efficient use of land area and
energy. These come with a price of designing against excessive
instability due to earthquake and wind excitation. Typically the
goal is to dampen excessive vibrations using active or passive
tuned mass dampers which are control systems designed for
an assumed excitation. The design never accounts for the
inhabitant discomfort resulting from dynamic loading due to
wind excitations. While the idea of controlling buildings is
relatively new, there is a very large body of research spanning
more than a century concerning the response of tall buildings
to wind.

The interest in understanding human discomfort was initi-
ated in the transportation research community as in [1], [2]. In
Smith et al. [1], one such study reports subjective rating of the
passengers for different road conditions and automobiles and
its correlation with root mean square acceleration. This study
involved measuring vertical accelerations from the floorboard
of a vehicle and lateral acceleration at the passenger/seat
interface. The results also indicate that humans are more
receptive towards lateral acceleration during discomfort from
vibrations.

Fundamental initial work was laid down by Davenport,
who studied basic statistical distribution for winds with the
purpose of determining sufficient safety factors in building
construction [3, 4]. These studies considered only static loads
and winds sampled from distributions.

Within the various disciplines of civil engineering a wide
variety of building models are used for different applications.
These models are often too complicated for the sort of analysis
we present because of the numerous degrees of freedom and
the resulting complexity. Recent interest in wind turbines has
resulted in considerable research in realistic statistical models
for wind. Kaminsky et al. [5] summarizes several different
approaches to model wind as a stochastic process, all of which

attempt to accurately reproduce the autocorrelation of wind at
varying time scales. However, even these methods are known
to only partially reproduce the necessary properties of realistic
wind as reported in [6].

Previous authors have considered the problem of the optimal
control of damping systems [7, 8, 9, 10]. Their approaches pro-
vide considerable insight in to the system, but they exclusively
consider static metrics for structural concerns, as opposed to
dynamic metrics such as the one we consider here.

In Sect. II, we present the structural model with reduced no
of degrees of freedom for proof of concepts of optimal control
in minimizing the inhabitant discomfort. In Sect. III, we
present the control strategies we envision for the problem and
present the implementation details and conceptual challenges.
Further in Sect. IV, we present dynamic response of the
structural model for a test wind loading to indicate what metric
should be used in optimizing the objective function and in
Sect. V, we discuss future directions and current understanding
of the model and control methods.

II. MODELING

Our approach aims at exploring the optimal control of a
structure under wind excitation by using a reduced order model
which still captures the dynamics of the structure relevant to
the design of a damper. Hence we are faced with the following
challenges:

• Previous research in structural health monitoring ([7, 8, 9,
10]) has focused on ground excitation (ie. earthquakes),
rather than wind excitation. Ground excitation can be
modeled as a family of periodic base perturbations,
whereas wind excitation is inherently stochastic.

• Structural engineers have been analyzing wind gust re-
sponse for a very long time([3, 4]), but their models are
not directly applicable here.

– They analyze the response to a constant gust, then
use a statistical analysis to find the strongest gust that
needs to be considered for a given factor of safety.
We are concerned with a dynamic wind over time.

– Their models tend to be excessively complex with
many degrees of freedom.

Thus none of these methods are directly applicable to what
were are trying to do here. We must adapt a combination of
them for our optimal control study.

Structural Model

We model the system as a simple cantilever beam, with the
damper mounted on the top floor. The displacements of the
building and damper are measured at the top floor, from the
centerline of equilibrium position of the building. Although
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the cantilever beam has a response along its entire length, we
assume that the beam vibrates in its first few higher modes.
Thus we can simplify the model using a lumped mass and
assuming the wind forcing at the top of the building as shown
in Fig. 1

x
x
d

Figure 1. The building is transformed to a lumped mass cantilever beam,
where the wind acts only on the top floor.

The Thompson lumped-mass equivalence says that if the
distributed-mass beam has mass per unit length m and has
length L, the dynamically equivalent lumped mass is given by

mL =
33

140
mL (1)

With these assumptions the model reduces to a coupled
mass-spring system with no damping from the structure itself.
The equations of motion has been derived in the appendix for
interested readers and describes briefly subsequent reduction to
first order form shown in Eqn. 9. Here we will briefly describe
the approach for analyzing the linear time invariant system of
Eqn. 9 under wind loading, W (t) as input.
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In this formulation, the state space consists of position and
velocity of the structure as (x, ẋ) = (x, y) and damper as
(xd, ẋd = xd, yd) as shown in Eqn. 2. The co-efficient of
damping denoted by cd which is due to the damper alone has
been assumed to have a form similar to Rayleigh damping i.e.,

cd = αmd + βkd

where α and β are real scalars with units 1/sec and sec
respectively. In modal analysis method of vibration, this is
not a conventional form which assumes a linear combination
of mass and stiffness matrix. The major advantage from this
assumption is to convert the damping matrix into an equivalent
Rayleigh damping so that using orthogonal transformation a
structure having N degrees of freedom can be reduced to N-
number of uncoupled equations. However, for systems with
large degrees of freedom, it is difficult to guess meaningful
values of α and β at the start of the analysis. Hence, we
have assumed a similar form to tackle this guessing problem
using an optimal strategy. On the other hand, the simplified
model of a high rise building is used to test optimal control of
damper characteristics to minimize inhabitant discomfort and
avoiding higher degree of freedom. This results in abstracting
the problem for a proof of concept and so that design engineers
can implement practical dampers with tunable parameters.

Synthetic wind speed and loading

As discussed above, we model the wind loading as a point
load and assume it is a one-step Markov process i.e., it only
remembers the current wind state1 for the transition to the next
state. In terms of probability of transition, it can be stated as:

P (X(tn) = xn|X(t1) = x1, ..., X(tn−1) = xn−1)) =

P (X(tn) = xn|X(tn−1 = xn−1))

We then use the following steps to synthesize wind speed
for the model:

1) Constructing state transition matrix(or transition prob-
ability matrix,P) for all the available wind states. For
our purpose, we have used the empirical matrix given
in [5]. Obtaining this from a time series of wind speed
is dealt with more rigor in the community of wind
energy harvesting and structural health monitoring. In
those applications, the characteristics of the locally
prevalent wind is required for design of wind turbines
and structures which is dependent on topography, local
seasonal and annual weather.

2) Compute the cumulative probability matrix(C) for the
state transition matrix as:

Cij =

j∑
k=1

Pik

3) Initialize the state(s) with a random integer in (1, Ns),
where Ns is the number of wind states.

4) The current state s corresponds to a row in C and to
obtain the next wind interval, we generate a random
number R from the uniform random distribution over
(0, 1) and the next state will be K where

Cik−1 ≤ R ≤ Cik

Thus, iterating the final step we can synthesize a time
series of wind speed as shown in Fig 2. For the analysis

1For our purpose, wind state is defined as a closed interval of wind speed
after partitioning the range of wind prevalent at a given site in equal diameter.
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Figure 2. A synthetic wind loading generated using the state transition matrix
given in [5] for Windsor, MA with a sampling frequency of 50 Hz.

shown, we are using the empirical state transition matrix
given in Kaminsky et al. [5]. For a more practical approach,
time series data for a particular location should be used for
computing the state transition matrix for the synthetic wind
speed.

In structural design, wind is classically modeled as a static
wind pressure varying along the vertical profile of the building
and the time variation is introduced by a gust factor. This
converts the wind excitation to a static equivalent load and as
such becomes obsolete for dynamic response analysis. Since
we are interested in the discomfort of inhabitants due to ex-
cessive sway resulting from vibrations, a static model of wind
is useless for this analysis. Although the spatial distribution
of wind load makes this model complete by introducing other
floors into the objective function of human discomfort but we
will rest this extension until further studies.

III. OPTIMAL CONTROL

The problem then turns to computing optimal control (or
trajectories) in this system. We have selected the metric
minimize the maximum velocity on the top floor. Velocity
and acceleration both affect the induced nausea in a complex
and interconnected manner [11]. We choose to minimize the
velocity because it has a direct representation in this model,
and in a continually forced oscillating system such as this low
velocities generally correspond to low accelerations. A more
advanced metric could consider a function of both acceleration
and velocity, giving their combined effect on nausea.

However, this deterministic statement of the metric is not
actually well-defined, because the system is stochastic. Instead,
we seek to minimize the expected value of the maximum speed
on the top floor over the next T time.

Before we state an optimal control scheme for the system
under this metric, we will note several properties of this
system that must be considered to find optimal trajectories:

• State includes wind The idea of a state for the building
must include the wind it is currently experiencing. This
is because the distribution of future loads the wind could
give depends on the current wind, and thus our control
strategy must also depend on the current wind. Therefore
we must include the wind in our concept of state. A
state is then given by s = {x, y, xd, yd,W}.

• Stochastic wind is not a distribution The Markov
chain formulation of wind describes transitions between
a finite set of wind states. This can be considered as
an approximation of a continuous processes, but even
then it is state-dependent and not described by any
distribution. This excludes the use of techniques in
traditional stochastic optimal control, such as Linear-
Quadratic-Gaussian control, which assume the random
input is described by some distribution, usually Gaussian

• The optimal trajectory is only followed for one
timestep Even though we phrase our optimal control in
terms of trajectories, and the optimal solution will be
a trajectory, we are still effectively developing a single
step control rule. This is because as soon as we observe
the wind at time t + ∆t, we will update the control
policy accordingly. It would be unreasonable to attempt
to follow an entire future trajectory when new wind
values are constantly being observed.

The stochastic process nature of the wind input excludes
the use of differential techniques like Pontryagin’s Minimum
Principle. Instead, we will make use of the discrete formula-
tion of the Hamilton-Jacobi-Bellman equation, referred to as
simply the Bellman Equation, which is stated generically as:

V (xt) = max
at

{F (xt, at) + βV (xt+1)} (3)

When the state is suitably discretized and the random wind
input is included, this transforms the problem to a Markov
Decision Process. These problems are studied in finance
and operations research, although there is no straightforward
general process for their direct solution.

For the discrete solution to be applicable, all components
of the state vector for the system are discretized to create a
finite set of states S. Each continuous component is divided in
to N equally size state buckets within some bounded range.
Together, the four discretizations result in N4 discrete states
for the entire system. This is a significant shortcoming which
is expanded on in the results and conclusions.

The problem is framed by considering the set of all possible
states at all future times within the horizon distance T . Due
to the discretizations of the state and time, this set is finite.
Each of these states has a probability ps associated with it,
which gives the likelihood that the system will be in that state
at that time. At the current time the system is in some state
s0 with probability P = 1. We wish to find the control for
the current state s0 which minimizes the expected value of the
cost for the current state. However, that cost depends on the
cost of all of the subsequent states, and so forth to time T . This
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recursive formulation admits a discrete dynamic programming
algorithm.

Dynamic Programming Algorithm

We follow the dominant approach in the analysis of Markov
Decision Processes and design a dynamic programming algo-
rithm to solve the problem. Dynamic programming algorithms
are characterized by utilizing the overlapping substructure of
the problem, in this case the recursive cost formulation, to
build up a solution piece by piece.

As a general outline, the algorithm begins by considering
all of the possible states at time T , for each of these states,
the cost is exactly known. The algorithm then considers each
of the states at time T − ∆t. The cost at each of these
states is minimized by choosing the control that minimizes
the expected cost over the next timestep, where the costs
have already been computed, in addition to the cost from the
current step. This process continues iteratively backwards in
time until the cost and optimal control of the initial state s0
are computed.

Optimal_Parameter_Dynamic_Programming
Computes the optimal damping control at time t0 by
minimizing the expected trajectory cost over a horizon
with length T .

– Compute an initial cost array at the horizon time
t0 + T (5 dimensional with an entry for every
discretized state). Each state has a cost given by
its y value.

– Iterate backwards from time t0 + T to t0:
– For each state s at time ti

– Consider each possible damping value, ini-
tialize a cost to 0 for that value.

– For every next wind, which occurs with
probability p, find the next state snext that
would be transitioned to.

– Look up the cost of snext, cnext in the array
for ti+1, and add p ∗ cnext to the cost for
this damping value. If the current state’s y
value is greater than cnext, add p∗y instead.

– Select the damping value with minimal cost
as optimal and store the cost in the array for
this timestep.

– When the outer loop runs for the last timestep
(the current time), the actual optimal control is the
control selected for the actual state s0.

Figure 3. The dynamic programming algorithm developed for optimal
trajectories.

A. Algorithm Runtime Analysis

The main pitfall of this is the computational cost. If we
discretized each of the state dimensions in to ndisc segments,
the model has n4disc total states. Performing each update step
requires considering the transition from each state under each

possible control value, for a total cost of n5disc. Repeating this
process over ntime time steps gives an algorithmic cost of
O(ntimeṅ

5
disc).

This runtime renders the algorithm completely infeasible
for all but the smallest discretizations. Even if heuristic im-
provements were made, the requirement to consider every state
at each timestep places algorithm limits on the performance.
Clearly, the value of this formulation is more theoretical than
practical in its current form.

IV. RESULTS

For preliminary numerics, we make use of combining the
state space model with a measurement equation which is a
standard technique ([see 12]) for obtaining response from a
linear time invariant(LTI) system. This can be stated in a
matrix form as:

ṡ = As+ Bw (4)
z = Ps+ Qw (5)

P =

 IN×N 0N×N

0N×N IN×N

−M−1K −M−1C

 , Q =

0N×N

0N×N

−M−1


where, N is the number of degrees of freedom. In this

formulation, we are measuring all the three motion variables
i.e., position, velocity and acceleration for a given degree of
freedom. Here, Eqn. 4 can be identified from Eqn. 2 with
states, s = {x, xd, ẋ, ẋd}. For the structural model used in
this study, A and B is given by Eqn. 10 as shown in the
Appendix. A. Eqn. 5 represents the measurement equation with
z = {x, xd, ẋ, ẋd, ẍ, ẍd} and matrices P6×4 and Q6×2. This
form is well-established in structural health monitoring and
filter design where the input vector w represents control ap-
plied to the state space model and the measurement equation.
The measurement equations record evolution of the variables
in numerical computations and represent variables which can
be measured using sensors during experiments.

Being a LTI system, the numerical errors scale linearly
with time steps and possess numerical stability but it is the
stochastic wind load w which renders the complexity and
interesting dynamics underlying this system. First, we test
our model with an impulse forcing (using impulse function
in MATLAB) which physically represents the unit delta force
at the initial time and for high enough damping should result
in a decay of vibrations. This is shown in Fig. 4(a) and shows
a typical decay response expected from a damped vibration
system. While, the Fig. 4(b) shows the response due to wind
excitation (using lsim function in MATLAB) which is acting
on the structure for 30 minutes and then the oscillations die
out. The parameters chosen for this simulation are such that the
structure is only 10 times heavier than the damper and hence
the damping is due to, for the most part, the a heavy mass
attached to the structure. This is an obvious finding which
is used for absorbing vibration energy in tall structures all
over the world and we are able to capture using the simplified
model and very crude assumptions.
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Figure 4. Fig. 4(a) shows displacement response for an impulse loading and Fig. 4(b) shows the same for the synthetic wind load shown in Fig. 5(a) sampled
at 30 Hz for 30 minutes Parameters used for this response: α = 0.2 and β = 10−3, mL = 107,md = 106, k = 105, kd = 1 for the mass and stiffness of
the structure and damper respectively in SI units. Using these parameters, the damping ratio corresponding to the first two mode is 1%.

Further, we show some response from the model with
parameters that represent a structure with very light damper
in Fig. 5(b), 5(c), 5(d). As the numerics indicate this system
doesn’t have enough mass to absorb energy and the oscillations
are not damped. The other observation is that the rate of
change in the response of displacement, velocity and accel-
eration increase in the same order. The acceleration has the
most correlation with human discomfort when traveling or
in a seated posture as was indicated in the Sect. I. This has
implications towards selecting a norm based on acceleration
and its rate of change to construct the objective function for
our study.

The dynamic programming method suffers significantly
from excessive computational cost. Runtimes for the method
are infeasible unless the values are discretized very coarsely
(n < 5). With this level of discretization, the entire system
breaks down and the proper dynamics are not recovered.
When the algorithm is applied and the response is computed,
the motion of a structure appears to be a straight line. This
is an artifact caused by the discretization. When the state
“buckets” are so large, the system can never make it out of its
initial bucket in a single timestep. Unfortunately, the dynamic
programming algorithm appears completely inapplicable to
realistic problems due to its computational complexity.

V. DISCUSSIONS

In this work, we provide a thorough and rigorous analysis of
a swaying building subject to realistic stochastic wind loads.

A reduced order model of a damped building is developed.
This model has few degrees of freedom, which permits ef-
fective optimal control, but still resolves the dynamics of the
more complex structural models.

The relationship between the stochastic wind input and
the resulting control is crucial in the development of control

technique. Although Gaussian models are easier to analyze,
they do not reproduce important physical characteristics of
wind. We demonstrate the use of Markov models for more
realistic wind modeling and analyze the implications for
optimal control. We conclude that differential approaches such
as Pontryagin’s principles are not applicable, and instead turn
to dynamic programming. While the dynamic programming
approach permits the optimization of an otherwise intractable
system, its computational cost impedes its use on realistic
problems. So we present a brief overview of the approach.
Future work will seek to modify the method algorithmically
to allow it to be used with discretizations sufficiently fine to
reproduce the desired dynamics. The authors are planning to
follow up the work by Jerg et al. [13] which is an extension
to stochastic input for two-degree of freedom system and uses
feedback controllers for stabilization.

APPENDIX

Equations of motion

L = T−V =

{
1

2
mdẋ

2
d +

1

2
mLẋ

2

}
−
{

1

2
kx2 +

1

2
kd(x− xd)2

}
(6)

For the structure with lumped mass mL, the Lagrange’s
equation is given by:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Qnc1 +W (t)

(mLẍ)− {−(kx+ kd(x− xd))} = −cd(ẋ− ẋd) +W (t)

mLẍ+ cd(ẋ− ẋd) + kx+ kd(x− xd) = W (t) (7)

For the damper with mass md, the Lagrange’s equation is
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Figure 5. Fig. 5(a) shows the time series of wind loading used in the simulation, sampled at 30 Hz for 6 minutes. This corresponds to 6 minutes of wind
loading after which the wind ceases. Fig. 5(b), Fig. 5(c) and Fig. 5(d) shows the displacement, velocity and acceleration response with α = 10−3 and
β = 10−3 for Rayleigh damping. mL = 107,md = 104, k = 105, kd = 1 for the mass and stiffness of the structure and damper respectively in SI units.
Using these parameters, the damping ratio corresponding to the first two mode is 5.1× 10−4%

given by:

d

dt

(
∂L

∂ẋd

)
− ∂L

∂xd
= Qnc2

(mdẍd)− {−(kd(xd − x))} = −cd(ẋd − ẋ)

mdẍd + cd(ẋd − ẋ) + kd(xd − x) = 0 (8)

Generally in dynamical systems, a set of M−equations in
the form of second order ODEs is first non-dimensionalized
to isolate the parameters of the system and then converted to
2M−first order ODEs. Here we will convert these equations to
first order form but avoid non-dimensionalizing it, as we will
identify the parameters from classical vibration problems.

Writing the equations in terms of position and velocity

results in:

ẍ = − cd
mL

(ẋ− ẋd)− k

mL
x− kd

mL
(x− xd) +

W (t)

mL

ẍd = − cd
md

(ẋd − ẋ)− kd
md

(xd − x)

Let us assume a form, similar to Rayleigh damping, for the
damper to be

cd = αmd + βkd

where α and β are real scalars with units 1/sec and sec
respectively. Now, we introduce the following variables to
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transform it into first order forms:

ẋ = y, ẋd = yd, ẍ = ẏ, ẍd = ẏd

Thus, after a bit of rearranging and linear algebra, we can
express this as Eqn. 9 with A and B defined in Eqn. 10 and
N denotes the degrees of freedom in the system.

ṡ = As+ Bw (9)

with,

A =

[
0N×N IN×N

−M−1K −M−1C

]
, B =

[
0N×N

−M−1

]
(10)

where,

M =

[
mL 0
0 md

]
is the mass matrix (11)

C =

[
cd −cd
−cd cd

]
is the damping matrix (12)

K =

[
k + kd −kd
−kd kd

]
is the stiffness matrix (13)
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