Trajectory based optimal control of swaying structures under wind gust

Shibabrat Naik, Nicholas Sharp, Shane Ross

Engineering Science and Mechanics, Virginia Tech

March 17, 2014

Naik, Sharp, Ross (ESM, VT) [Swaying structures](#page-7-0) March 17, 2014 1 / 8

Motivation

- High rise structures are susceptible to dynamic excitations like earthquake and wind gust.
- Typically active tuned mass dampers, semi-active TMD, MR dampers are engineered for controlling response.
- Trajectory based control used information from phase space and optimal sets to reach or move a certain subset.
- For our interests, objective is to reduce inhabitant discomfort by reducing excessive sway in top floors and adverse structural stresses.

Modeling challenges

• Efforts in structutal health monitoring has been focussed on controlling response under earthquake as base excitations.

- Damper characteristics are controlled based on the feedback from the structure to optimize cost function of very high dimensional (100 or so) state vector.
- Response to wind load is calculated from empirical gust formulae and designed using probabilistic approach towards worst gust over the life span of the structure.

Reduced order model

- Model the structure as a cantilever beam with simple oscillation
- Assumptions:
	- Oscillation only in first mode
	- No damping coefficient for structure
	- Apply wind force entirely at top floor
- This system has just two degrees of freedom

Reduced order equations of motion

Use an *equivalent lumped mass* to derive equations of motion:

$$
\mathbf{M}\ddot{\vec{x}} + \mathbf{C}\dot{\vec{x}} + \mathbf{K}\vec{x} = \vec{F}
$$

with

$$
\vec{x} = \begin{bmatrix} x \\ x_d \end{bmatrix}, \ \mathbf{M} = \begin{bmatrix} m_L & 0 \\ 0 & m_d \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} c_d & -c_d \\ -c_d & c_d \end{bmatrix},
$$

$$
\mathbf{K} = \begin{bmatrix} k + k_d & -k_d \\ -k_d & k_d \end{bmatrix}, \ \vec{F} = \begin{bmatrix} W(t) \\ 0 \end{bmatrix}
$$

where

$$
m_L = \frac{33}{140} mL \qquad \text{and} \qquad k = \frac{3EI}{L^3}.
$$

Wind gust and related statistics

- Wind velocity is a **stochastic** variable which simulates physical wind effects
- Observations of wind speed follow a gaussian distribution
- Must consider **continuity** of wind, reprsented by the autocorrelation
- Simulate wind using **Markov** chains trained on experimental measurements Time series of measured and synthetic

wind speed [\[1\]](#page-7-1)

Optimal control strategies

- Control: $c_d \in [0, c_{max}]$, the damping coefficient for the damper
- **Cost**: $J = \int_0^T \ddot{x}(t)dt$, the total acceleration of the top floor over time
- Potential strategy: Discretize the phase space and compute transition probabilities and costs for each state

References

F. Kaminsky, R. Kirchhoff, C. Syu, and J. Manwell, "A comparison of alternative approaches for the synthetic generation of a wind speed time series," *Journal of solar energy engineering*, vol. 113, no. 4, pp. 280–289, 1991.

U. Aldemir, "Optimal control of structures with semiactive-tuned mass dampers," *Journal of sound and vibration*, vol. 266, no. 4, pp. 847–874, 2003.

L. M. Jansen and S. J. Dyke, "Semiactive control strategies for mr dampers: comparative study," *Journal of Engineering Mechanics*, vol. 126, no. 8, pp. 795–803, 2000.

A. G. Davenport, "The application of statistical concepts to the wind loading of structures.," in *ICE Proceedings*, vol. 19, pp. 449–472, Thomas Telford, 1961.

C. Chang and H. T. Yang, "Control of buildings using active tuned mass dampers," *Journal of engineering mechanics*, vol. 121, no. 3, pp. 355–366, 1995.

Naik, Sharp, Ross (ESM, VT) [Swaying structures](#page-0-0) March 17, 2014 8 / 8

