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Abstract— This paper introduces and addresses problems 

related to quantifying chaotic dynamics in both space and time. A 
wealth of research has been done to classify and quantify 
temporally chaotic systems. Traditional diagnostic tools such as 
Lyapunov exponents and vectors are extended to higher-
dimensional problems that are common to spatially extended 
systems.  We investigate the applications of these tools and the 
algorithms needed for calculation of higher dimensional systems. 
We employ these diagnostic tools to simplified numerical models: 
the one- and two-dimensional coupled map lattice and the Lorenz 
system of ordinary differential equations. The fractal dimension 
was calculated for the one- and two-dimensional coupled map 
lattices for different parameters. The fractal dimension was 
found to vary linearly with the system size which suggests 
extensive chaos. A method to calculate covariant Lyapunov 
vectors successfully captured the true perturbation growth in 
phase space. For the one-dimensional coupled map lattice, the 
hyperbolicity was not influenced much by system size. We extend 
our study to an experimentally relevant fluid convection system 
to gain insight on topical phenomena due to the presence of 
spatiotemporal chaotic behavior. Our investigation showed 
enhanced transport for a passive scalar species due to the 
presence of a spatiotemporally chaotic flow field. The transport 
enhancement factor was found ascribed to power laws similar to 
those found in experiments with different geometries and system 
sizes.  

I. INTRODUCTION 

The quantification and characterization of chaos in 
both space and time is at the forefront of dynamical 
systems research today. Systems with chaotic dynamics 
in time have been studied extensively since the 
phenomenon was first revealed by Lorenz (1963) in his 
seminal paper on atmospheric dynamics [1]. Many 
natural phenomena can be modeled as large, spatially-
extended systems that exhibit complex dynamics in 
space. For example, these spatial complexities can be 
seen in the atmospheres of Earth and other planets, the 
dynamics of excitable media and the transport of 
biological species in ocean currents [2]. The study of 
systems with chaotic dynamics in both space and time is 
termed spatiotemporal chaos. 

The quantification of systems exhibiting temporal 
chaos has relied on using tools and techniques in phase 
space; in particular, on the geometry of these objects in 
phase space to characterize these systems. To model 
spatiotemporal chaos, one must move from systems of 
ordinary differential equations to partial differential 
equations, which means a transition from finite 
dimensional systems to infinite dimensions in phase 
space. In this sense, characterizing spatiotemporal chaos 

involves a transition away from the geometric 
descriptions that scientists and engineers have been 
familiar with for low dimensional systems. 

The Lyapunov spectrum has been the method for 
characterizing chaotic systems. In this paper, the 
diagnostic tools used for quantifying temporal chaos will 
be extended to spatiotemporal systems using insights 
from simplified numerical models to solutions to 
governing partial differential equations. The Lyapunov 
spectrum will be calculated for simplified one- and two-
dimensional coupled map lattice system, and the fractal 
dimension is determined for this system. Second, an 
overview of the algorithms developed for calculating the 
spectrum of Lyapunov exponents and covariant 
Lyapunov vectors will be presented and will be applied 
to the Lorenz system and discussed for high dimensional 
systems. Finally, solutions to the governing partial 
differential equations for a large-spatially extended 
system will be presented to connect theory with 
experimentally accessible results. One method for 
quantifying the transport of a passive scalar will be 
presented. 

II. COUPLED MAP LATTICE  

Coupled map lattices are simplified systems that 
provide important insight into certain physical 
phenomenon. These systems are also an excellent 
platform to study chaos in space and time. In this 
section, we will introduce Lyapunov diagnostic tools to 
one- and two-dimensional coupled map lattices. 

A. Models 

A coupled map lattice has discrete time, discrete 
space, and each lattice site has a continuous state [3]. 
Coupled map lattices take on many forms based on the 
type of coupling rule employed: additive, unidirectional, 
and diffusive coupling are three examples. In this study, 
the diffusive coupling rule is selected. One-dimensional 
and two-dimensional diffusive coupled map lattices can 
be described using equations 1 and 2, respectively: 
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Here, i  and j  are lattice indexes, x  is the lattice state, 

n  is the time step, and D  is the diffusion parameter. For 
these models, we chose random initial conditions and 
periodic boundary conditions. In addition, the logistic 
map is used as the mapping function which is defined as

)1()( nnn xaxxf  .   

To calculate Lyapunov spectra of the model, it is 
necessary to linearize equations (1) and (2) as follows: 
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The Gram-Schmidt reorthonormalization (GSR) 

approach is then used to reorthonormalize the vector 
computations [4]. In the first step, a set of orthogonal 

vectors are considered as initial ones  11
1 ,..., nxx   or 

 1
,

1
1,1 ,..., mnxx  , in which n and m are node numbers. In 

the next step, equations (1) and (3) or (2) and (4) are 
solved simultaneously to obtain the new set of vectors

 11
1 ,..., nxx    1

,
1

1,1 ,..., mnxx  . After each iteration of the 

algorithm, each vector will orient itself towards the 
direction of the vector of the maximum local growth [4]. 
To overcome this singularity, each vector is 
reorthogonalized after each step as follow: 
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,  is inner product. After n-normalization, the 

Lyapunov exponent can be calculated by equations (8-
12): 
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Finally, the fractal dimension will be obtained by 
using the Kaplan-Yorke formulation found in equation 
(7) [4]: 
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Here, j is the index value that is defined by the 

constraints: 
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B. The Lyapunov spectrum and fractal dimension for 
one-dimensional coupled map lattice 

 We simulate a one-dimensional coupled map lattice 
for a range of parameters. A model was simulated for 
128 nodes with a diffusive coupling, 4.0D , and a 
logistic map parameter value, 7.3a . Figure 1 depicts 
Lyapunov spectrum for the results of this simulation. 
Since largest Lyapunov exponents are positive in 
magnitude, their summation will result in a positive 
slope as the lattice site increases, but as other Lyapunov 
exponents become negative, the slope of summation 
curve becomes negative and the sum decreases until the 
sum becomes negative. The point at which the sum 
crosses the zero summation line is defined as the fractal 
dimension, which is 47.807 for the selected parameters, 
as illustrated in Figure 1. It is known that for systems 
exhibiting chaotic behavior, this fractal dimension is a 
non-integer value. The relevance of this value is that it 
suggests the minimum number of dimensions or degrees 
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not, we simulate it for different coupled map lattice 

sizes. Figure 5 shows that the relationship between D

and 2n  is almost linear and therefore is characterized by 
extensive chaos. The slope of this line is represented by 

  and characterizes the chaotic length scale for the 

system and can be used to predict fractal dimensions of 
high-dimensional systems.  

 
Figure 5: Plot of fractal dimension ( D ) versus n2. 

III. LYAPUNOV VECTOR 

Lyapunov exponents are an important tool to 
quantifying the magnitude of a perturbation growth. In 
higher dimensional systems, it is useful to know the 
direction of this perturbation growth in phase space. One 
disadvantage to the method described in the previous 
section is the inability to extract this perturbation growth 
other than the leading order term. In this section, we will 
discuss one algorithm that can be used to calculate the 
covariant Lyapunov vectors to overcome this barrier. 

A. Theoretical background 

This section will highlight the use of covariant 
Lyapunov vectors as another method to quantify 
spatiotemporal chaos. The original idea comes from 
Oseledec (1968) [6]. In this paper the Oseledec Theorem 
was proposed which provides the theoretical background 
for Lyapunov exponents. His paper highlights two 
important conclusions for the study of covariant 
Lyapunov vectors. Theorem 1 states 

 

Ԧ଴ሻݔሺܣ ൌ lim
௧→ஶ

ሾ	்ܯሺݔԦ଴, ,Ԧ଴ݔሺܯሻݐ ሻሿݐ
ଵ
ଶ௧		 (16) 

 
where ܯሺݔԦ଴,  ሻ is the fundamental matrix that is definedݐ
by: 
  

Ԧሶݔ ൌ , (17)	ԦሻݔԦሺܨ

ܬ ൌ
ԦሻݔԦሺܨ߲

Ԧݔ߲
, (18)

 
and 
 
Ԧ௧ݔߜ ൌ ,Ԧ଴ݔሺܯ Ԧ଴ . (19)ݔߜሻݐ
 
 is the Jacobi matrix for the dynamical system. There ܬ
are some important features for the fundamental matrix 
such as: 
  
,Ԧ଴ݔሺܯ Ԧ଴ݔߜሻݐ ൌ ௧ିଶܬ௧ିଵܬ ⋯ ,   (20)	଴ܬଵܬ
݀
ݐ݀
,Ԧ଴ݔሺܯ Ԧ଴ݔߜሻݐ ൌ ,Ԧ଴ݔሺܯ௧ܬ , (21)	ሻݐ

 
and 
 
,Ԧ଴ݔሺܯ 0ሻݔߜԦ଴ ൌ ܫ . (22)

 
For the matrix Ԧ଴ሻݔሺܣ , the eigenvalues are the 

Lyapunov exponents.  Theorem 2 states that 
  

Ԧ଴ሻݔߜሺߣ ൌ lim
௧→ାஶ

1
ݐ
ln ሺܯሺݔԦ଴, . (23)	Ԧ଴ሻݔߜሻݐ

 
Theorem 1 proves the existence of Lyapunov 

exponents. Theorem 2 indicates some of the vectors are 
covariant with the dynamics of the system. If we apply 
the definition of Lyapunov exponents, 

 

Ԧ଴ሻݔߜሺߣ ൌ lim
௧→ାஶ

1
ݐ
ln |  (24)			Ԧ௧||ݔߜ|

 
to Theorem 2, we can prove: 

 
Ԧ଴ݔߜሺߣ ൅ Ԧ଴ݔߜ

∗ሻ ൑ max ሼ Ԧ଴ሻݔߜሺߣ ൅ Ԧ଴ሻ∗ሽݔߜሺߣ  (25)
 

where ݔߜԦ଴
∗ is a different initial vector of ݔߜԦ଴. It indicates 

that from the combination of the initial conditions, we 
cannot extract any new Lyapunov exponents. There 
exists a set of special vectors, however, from which we 
can obtain all the Lyapunov exponents. These special 
vectors are linearly independent and are called covariant 
Lyapunov vectors. The algorithm used to calculate the 
covariant Lyapunov exponents is no different from the 
original method to calculate the Lyapunov exponents. 
The original algorithm of Lyapunov exponents is 
 
௡ܺߜ ൌ ௡ܳ௡ିଵ (26)ܬ
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The ܺߜ௡ is the matrix from the combination of ݔߜԦ௡. 
ܳ௡ and ܴ௡ are from QR-decompostion.  
The algorithm of covariant Lyapunov vectors is [7]: 
 
௡ାଵܺߜ ൌ 	௡ܳ௡ܬ (28)
௡ܺߜ ൌ ܳ௡ܴ௡	. (29)

 
The above process is the exact same as the original 
method, which is a forward iteration. Next, we need a 
backward iteration: 

 

௡ିଵܥ ൌ ܴ௡
షభ
௡ (30)ܥ

ܸ௡ି௠ ൌ ܳ௡ି௠ܥ௡ି௠	. (31)
 

The initial condition for ܥ௡ can be chosen as a random 
up-triangle matrix. From the backward iteration process 
we can get  ܥ௡ି௠ . The columns of matrix, ܸ௡ି௠ , are 
the covariant Lyapunov vectors at time mn .  The 
covariant Lyapunov vectors can reflect the true direction 
of perturbation growth or decay. So with covariant 
Lyapunov vectors, we can obtain more information 
about the perturbation field. From Lyapunov exponents, 
we can only get information about the magnitude of 
perturbation growth or decay; however, more physical 
insight can be gained from the direction of perturbation 
growth also. 

B. The result from Lorenz system 

The Lorenz system is a simplified system derived 
from the equations governing a Rayleigh-Bénard system. 
Since it is three-dimensional system, getting the 
covariant Lyapunov vectors is simpler than for higher 
dimensional systems. For this reason, it is an appropriate 
method for validating the algorithm to obtain covariant 
Lyapunov vectors. The Lorenz equations are: 

 
ݔ݀
ݐ݀

ൌ ݔሺߪ െ ሻ (32)ݕ

ݕ݀
ݐ݀

ൌ ߩሺݔ െ ሻݖ െ (33) ݕ

ݖ݀
ݐ݀

ൌ ݕݔ െ (34) .	ݖߚ

 
The parameters chosen for our system are 10 ,  

28 , and 
3

8
  since these parameters guarantee 

chaotic dynamics and are used frequently in the 
literature. The phase portrait in the zx  plane for the 
selected parameters is displayed in Figure 6. 

 
Figure 6: The phase portrait of the Lorenz equation in the x-z plane 

for ߪ ൌ 10, ߩ ൌ 28 and  ߚ ൌ 8/3 . 
 

The Lyapunov exponents for the Lorenz system are 
calculated and displayed in Figure 7. 

 
Figure 7: Plot of Lyapunov exponents in Lorenz system. 

 
The covariant Lyapunov vector corresponding to the 

second order Lyapunov exponent should be parallel to 
the tangent vector. This is true because the tangent 
vector should be parallel to the Lyapunov vectors 
corresponding to a Lyapunov exponent equal to zero. 
This is shown in Figures 8 and 9. 

 
Figure 8: The angle between tangent vector and second order 

covariant Lyapunov vector. 

 
Figure 9: The angle between tangent vector and second order 

orthogonal Lyapunov vector. 
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Figure 8 is the angle between the second order 
covariant Lyapunov vector and the tangent vector. It is 
close to zero. Figure 9 is the angle between the second 
order orthogonal Lyapunov vector and the tangent 
vector. This angle does not converge to a single value.  

C. The result of one-dimensional coupled map lattice 

 
Figure 10: The result from 1D chain of diffusively coupled logistic 

maps. 
 

In Figure 10, the dashed line is the summation of 
Lyapunov exponents which is calculated from the 
traditional algorithm for Lyapunov exponents. The solid 
line is the summation of Lyapunov exponents which is 
calculated from the covariant Lyapunov vectors. With 
the equation: 

 

Ԧ଴ሻݔߜሺߣ ൌ
1
ݐ
ln	ሺܯሺݔԦ଴,  (35)				Ԧ଴ሻݔߜሻݐ

 
the results from different algorithm are close agreement.  

 
Figure 11: The principal angle between stable and unstable manifold. 
  
  Many theories are based on hyperbolic systems, 
however, in real world no such systems exist. In this 
case, evaluating the hyperbolicity of the system is 
important for establishing a theoretical framework. 
Because covariant Lyapunov vectors can reflect the 
direction of perturbation growth and decay, they can be 
used to evaluate the hyperbolicity of the system. The 
hyperbolicity of the system can be defined by the 
principal angle between the stable manifold and unstable 
manifold. In dynamical systems, the stable manifold is 
defined by the matrix of all the covariant Lyapunov 
vectors corresponding to the negative Lyapunov 

exponents. The unstable manifold is defined by the 
matrix of all the covariant Lyapunov vectors 
corresponding to the positive Lyapunov exponents. For a 
pure hyperbolic system, the principal angle is 90 
degrees. In Figure 11, the dashed line is the principal 
angle between the stable and unstable manifolds in the 
system with the number of lattice sites being 80. The 
solid line is the principal angle between the stable and 
unstable manifolds in the system where the number of 
lattice sites is 128. This implies that the scale of the 
system does not have significant influence on the 
principal angle. 

IV. TRANSPORT IN A COMPLEX FLOW FIELD 

The previous sections have discussed applying 
Lyapuonv diagnostic tools to simplified models; 
however, these models do not reflect real-world systems 
accessible to experiment. We now extend this discussion 
to an experimentally relevant, infinite-dimensional fluid 
convection system governed by partial differential 
equations. The diagnostic tools used so far have been the 
crux of theoretical work to quantify chaotic systems, but 
these quantities cannot be measured in experiment. 
Alternative diagnostic tools that can be measured in 
experiment are proposed. 

A. Boussinesq equations 

The transport of a scalar species is an important 
phenomenon related to many areas of scientific and 
engineering interest and bridges the gap between 
spatiotemporal chaos theory and experiment [8]. 
Rayleigh-Bénard convection is the system that is 
selected to study transport due to extensive experimental 
work done on similar systems by which comparisons can 
be made [9,10]. The domain is heated from below and 
cooled from the top which creates a buoyancy-driven 
flow across the domain. A schematic of the domain is 
shown in Figure 12. 

 
Figure 12: Rayleigh- Bénard convection cell. 

 
The aspect ratio for this system is the ratio of the radius 

of the domain, 0r , to the depth, d , 
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d

r0 . (36)

 
The boundary conditions used in the simulations are 

those that are accessible to experiment. The top and 
bottom of the domains were held at fixed temperatures 
with random thermal perturbations to break symmetry. 
Along the material walls no slip and conducting 
boundary conditions were imposed. 

The partial differential equations governing the flow 
field dynamics are the Boussinesq equations: 

 

  zRTupuut ˆ21    (37)

  TTut
2


 (38)

0 u


 (39)

 
where the flow field is defined by the velocity, 

),,,( tzyxu , the temperature, ),,,( tzyxT , and the 

pressure, ),,,( tzyxp fields and ߪ  is the Prandtl 
number. The equations are non-dimensionalized by the 
vertical thermal diffusion time ݀ଶ/ߙ  where ߙ  is the 
thermal diffusivity. 

The Rayleigh number, R, is the non-dimensional 
measure of the temperature difference across the 
domain. It is defined as 

 


 3Tdg

R


  (40)

 
and is a measure of the ratio of the buoyancy to viscous 
forces. For the cylindrical domain that is investigated, 
the onset of convection occurs at a critical Rayleigh 
number of about 1708cR . When the Rayleigh 

number is increased further, defects begin to develop in 
the convection roll pattern until a time-dependent pattern 
in the flow field emerges and the onset of spatiotemporal 
chaos occurs. 

Figure 13 shows a typical mid-plane solution to the 
Boussinesq equations at a Rayleigh number where the 
flow field is spatiotemporally chaotic. 

B. Advection-diffusion equation 

The transport of passive scalar species is described by 
the advection-diffusion equation 

 

  cLcut
2


 (41)

 
where ),,,( tzyxc  is the concentration field, and the L 

is the Lewis number which is the /DL  , where D is 
the molecular diffusivity. In this study, Lewis numbers 

of 13 1010   L  are explored since these values are 
experimentally accessible and are relevant to the results 
presented in the literature [7, 8].  

C.  Numerical scheme 

A spectral element scheme is used to solve the 
Boussinesq and advection-diffusion equations 
simultaneously. The numerical scheme is second or third 
order accurate in time and exponentially convergent in 
space. The stability criteria is dictated by the spatial step 

 
2/1













u

L
x   (42)

 
The small Lewis numbers that are studied are 

computationally accessible using a filtering procedure 
described in more detail by Chiam (2005) [11]. More 
details about the general numerical scheme can be found 
in Fisher (1997) [12].  

D. Results 

A typical flow field from solving the Boussinesq 
equations at a Rayleigh number of 6000 is depicted in 
Figure 13.  

 
Figure 13: Rayleigh- Bénard convection flow field at R = 6000. The 

red indicates hot rising fluid and the blue is cold sinking fluid. 
 

The flow field was allowed to develop for 50 time 
units before the passive scalar was placed. An initial 
Gaussian distribution was placed in the flow field and 
solved simultaneously. The images that are found in 
Figure 14 below show important qualitative features 
about the evolution of the passive scalar field as a 
function of the Lewis number. We see that transport of 
the species is inhibited when the Lewis number is 
smaller as seen in the images in (c) in Figure 14. In other 
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words, the concentration of the species is localized in 
these cases. We also see transport occurring normal to 
roll boundaries as seen in images in (a) of Figure 14, but 
transition occurring to transport parallel to the roll 
boundaries as the Lewis number decreases. This 
observation has been seen and quantified in simulations 
of similar systems [11]. 
 
(a) 

 
(b) 

 
 
(c) 

 
Figure 14: Evolution of the passive scalar distributions after six time 
units for a range of Lewis numbers: (a) L=10-1 (b) L=10-2 and (c) L = 
10-3.The black contour lines indicate mid-plane temperature values 
and the pseudo-color represent concentration of the passive scalar 
concentration (red is highest concentration, blue is lowest 
concentration). 
 

One way to quantify the transport of the passive scalar 
is to look at the statistics of the spreading of the species 
concentration. Our analysis of the spreading can be 
reduced to two dimensions due to the spatially extended 
convection cell system that is studied. The mean-square 
displacement is defined as 

 

 

 







0

2

0

0

2

0

2

),,(

),,()]([

  V(t) 







rdrdtrc

rdrdtrctrr

 (43)

where the quantity )(tr  is the center of mass of the 

tracer concentration field and is defined as 
 

.

),,(

),,(

  (t)r

0

2

0

0

2

0

 

 













rdrdtrc

rdrdtrrc

 (44)

 
The mean-square displacement is calculated over time 

for each of the simulations ran. Figure 15 shows mean-
square displacement as a function of time for the cases 
of 3000R  and 6000R . The results show that the 
mean-square displacement grew proportionally with a 
power law of unity. This proportional growth suggests 
that the spreading of the averaged passive scalar 
concentration field, ),(~ trc  is a normal diffusive process 

that can be described by a reduced one-dimensional 
diffusive process governed by, 

 

cLct
~~ 2*


 (45)

 

where *L  is the effective Lewis number and is extracted 
from the mean-square displacement by the expression 
 

cLtV rr
~4)( * . (46)

 
Another test that can be done to confirm the averaged 

spreading as a normal diffusive process is to look at 
ratios of higher order moments to the mean-square 
displacement. For normal diffusive processes, the ratio 
should scale  

 

const
tV

tV q
q 

)(

)( /2

 (47)

 
where q is an integer of higher order moments. Plotted 

in Figure 16 are the ratios with higher order moments of 
4q , 6  and 8 . The values approaching a constant 

value over time confirm a normal diffusion process.   
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 (a)

 
    (b) 

 
Figure 15: Plots of the mean-square displacement of the passive 
scalar concentration for (a) R = 3000 and (b) R = 6000. The 

spreading is compared with a slope of unity that is defined by an 
overall normal diffusive process. 

 

 
Figure 16: Plot of the ratio of higher order moments to the mean-

square displacement as a function of time. Higher order moments of q 
= 4, 6, and 8 are color differentiated. 

 
Using the enhanced Lewis number, a transport 

enhancement factor due to the presence of the 
spatiotemporally chaotic flow field is defined to be 

  

L

LL 


*

 (48)

 

It is desirable to see how the transport enhancement 
factor trends as a function of the characteristic velocity 
of the flow field, so it is compared with the Péclet 
number which is defined as 

 

L

u
P



  (49)

 

where the characteristic velocity magnitude, u


,  is 

calculated from the maximum value of the velocity in 
the flow field. The transport enhancement feature as a 
function of the Péclet number is shown in Figure 17. 
Two regimes emerge in this transport enhancement plot: 
a low Péclet number regime defined as diffusive-
dominated transport and a high Péclet number regime 
defined as advection-dominated transport. In diffusive-
dominated systems, the transport enhancement factor 

scales with 2/1P  and in advection-dominated systems, 

the transport enhancement factor scales with 1P . These 
trends are validated by similar ones seen in experimental 
work done by Solomon and Gollub in a rectangular 
domain of Rayleigh-Bénard convection [9, 10]. 

 
Figure 17: Plot of the transport enhancement factor as a function of 
the Péclet number for the range of Rayleigh numbers that were tested. 
The low Péclet number regime is compared with a slope of 0.5 and 
the high Péclet number regime is compared with a slope of unity. 

 
From the trends seen in Figure 17, one would expect the 
effective Lewis number to scale proportionally with the 
characteristic velocity in the high Péclet number regime. 
This can also be seen by multiplying equations (48) and 
(49) by the Lewis number to obtain 
 

uLL
* . (50)

 
Figure 18 plots the enhanced Lewis number as a 
function of the reduced Rayleigh number, 
 

c

c

R

RR 
  (51)
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which shows that the enhanced Lewis number scales 
with the Péclet number to the 0.5 power. 
 

 
Figure 18: Plot of the effective Lewis number as a function of the 
reduced Rayleigh number. Figure shows that for advection-
dominated transport, the effective Lewis number scales with the 
Péclet number to the 0.5 power. 
 

V. CONCLUSION 

In this paper, we explore spatiotemporal chaos using 
simple numerical models which are important to the 
study of many natural phenomena including thermal-
fluid systems, neural networks, pattern formation in 
nature, and population dynamics. In our study, we 
applied diagnostic tools like the Lyapunov spectrum and 
the fractal dimension to quantify the chaotic dynamics 
for a one- and two-dimensional coupled map lattices. 
This study showed that the fractal dimension scaled with 
the map lattice size which indicates extensive chaos. In 
some systems, however, the true direction of the all the 
perturbation growths are required and other methods 
must be applied. To amend this shortcoming, we 
discussed and implemented an algorithm for calculating 
the covariant Lyapunov vectors which preserves the true 
direction in phase space, and thus reflects the direction 
of perturbation. The algorithm was validated on the one-
dimensional coupled map lattice, the results of which 
showed good agreement between the two methods. 
Additionally, the hyperbolicity of this lattice map was 
calculated and was found to not be influenced by the size 
of the map significantly. 

Finally, we investigated a large spatially-extended 
fluid convection system exhibiting spatiotemporal chaos 
with experimentally relevant boundary conditions. Tools 
to quantify the transport of a passive scalar were 
presented and results showed that the transport of the 
species followed power laws similar to those found in 
experimental systems of different sizes and geometries. 

For future work, we would like to implement the 
algorithm discussed in Section III for calculating the 
covariant Lyapunov vectors to the experimentally 
relevant Rayleigh-Bénard convection. A formal study 

into the effect of system size on the results obtained in 
this paper is also desired. Pursuing this work could lead 
to novel insights into pattern formation in large, natural 
systems exhibiting spatiotemporal chaos. 
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