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B Halo Orbit and Its Computation: Outline

» In Lecture A, we have covered

e Importance of halo orbits.
e Finding periodic solutions of the linearized equations.
e Highlights on 3rd order approximation of a halo orbit.

e Using a textbook example to illustrate Lindstedt-Poincaré method.
» In Lecture 5B, we will cover

e Use L.P. method to find a 3rd order approximation
of a halo orbit.
e Finding a halo orbit numerically via differential correction.

e Orbit structure near Ly and Lo.



B Review of Lindstedt-Poincaré Method

» To avoid secure terms, Lindstedt-Poincaré method

e Notices non-linearity alters frequency A to Aw(e).

e Introduce new independent variable 7 = w(e)t:

1

t=7Tw :T(l—|—€w1—|—€2w2—|—“->.

e Rewrite equation using 7 as independent variable:
¢+ (14 ew + w4+ - g+ eq’) = 0.

e Expand periodic solution in a power series of e:

®.0

¢=> "qu(r) = qo(7) + equ(7) + Eqlr) + - -

n=0
» By substituing ¢ into equation and equating terms in €'
g +q0 =0,

¢+ q = —q; — 2wiqo,
2
&+ @ = =3¢3q — 201 (q1 + q3) + (wi + 2w9)qo,



B Review of Lindstedt-Poincaré Method

» Remove secular terms by choosing suitable w,,.

e Solution of 1st equation: gg = acos(T + 7).

e Substitute gy = acos(7 + 77) into 2nd equation

qi/ +q1 = —a’ C083<7' + 719) — 2wia cos(T + )

1 3
_ _Za?) cos 3(T + 1) — (ZaQ + 2w1)acos(T + 70)-

o Set w; = —3a?/8 to remove cos(T + 1) and secular term.

» Therefore, to 1st order of €, we have periodic solution

1
q = acos(wt + 1) + 55€ €08 3(wt + 7p) + 0(€?).

with
3 o 15 94

W = (1 —§€CL _ﬁE a —|—0<€3>.

» Lindstedt-Poincaré method consists in
successive adjustments of frequencies.



B Lindstedt Poincaré Method: Nonlinear Expansion

» CR3BP equations can be developed using Legendre polynomial Py,

n>3
j+ 2%+ (o — 1)y = QZC np (f)
Y 2 y—a np np
n>3
. 0 oo T
e = Y e )
n>3

where g7 = a2y+2%, and e = 73+ 1)" (1= ) (£25)" 1)
e Useful if successive approximation solution procedure is carried
to high order via algebraic manipulation software programs.
x x 2n—1 x n—1 x
Ph(—)=— P,_1(—) — P,_o(—).
n(p) p( n ) n 1(,0) ( n ) n 2(0)
e Recall that p < 1.




B Lindstedt Poincaré Method: 3rd Order Expansion

» 3rd order approximation used in Richardson [1980]:
3

T —2y— (14 2c)r = 563(2332 —y? =29
1204227 — 3y° — 32°%) + o(4),
3
§+ 2%+ (co — 1)y = —3cazry — §C4y(4:c2 — 2 — 2% + o(4),
3

Z4coz = —3c3r2 — 5642(4562 — % — 2%+ o(4).



B Construction of Periodic Solutions

» Recall that solution to the linearized equations
& —2y—(14+2c)x =0
42+ (co—1)y =0
Z4+coz =
has the following form

r = —Aycos(M + @)
z = A.sin(vt + )

» Halo orbits are obtained if amplitudes A, and A,
of linearized solution are large enoug so that
nonlinear contributions makes eigen-frequencies equal (A = v).

» This linearized solution (A = v)
is the seed for constructing successve approximations.



B Construction of Periodic Solutions

» We would like to rewrite linearized equations in following form:
& —2y—(14+2c)x =0
42+ (co—1)y =0
Nz =0
which has a periodic solution with frequency A.

» Need to have a correction term A = M\ — c9
for high order approximations.

3
54+ Mz = —3cswz — 5042(4x2 —y? — 2 + Az +0(4).



B Lindstedt-Poincaré Method

» Richardson [1980] developed a 3rd order periodic solution
using a L.P. type successive approximations.

e To remove secular terms, a new independent variable 7 and
a frequency connection w are introduced via

T = Wt.

e Here,

e The wy, are assumed to be o(AY)
and are chosen to remove secure terms.

e Notice that A, << 1 in normalized unit
and it plays the role of €.



B Lindstedt-Poincaré Method

» Equations are then written in terms of new independent variable 7

w?r! — 2wy’ — (14 2e9)x

W2y + 2w’ + (e — 1)y

w22 -+ Az

3
503(2332 —y? =2

+2e42(22° — 3y* — 32%) + o(4),

—3C31Y

3
—§C4y(4:v2 — 1y — %)+ o(4),
—3c312

3
—§C4Z<45L“2 —y? — 22 + Az + o(4).

» Jrd order successive approximation solution is a lengthy process.

Here are some highlights:

e Generating solution is linearized solution with ¢ replaced by 7

— Ay cos(AT + ¢)

T
y = kAgzsin(AT + @)
2

= A.sin(AT + 1)



B Lindstedt-Poincaré Method

» Some highlights:

e Look for general solutions of the following type:
Tr = Z (p COSNTY, Y = Z bpsinnry, z = Z Cp, COSNTY,
n>0 n>0 n>0
where 71 = AT + ¢ = A\wt + ¢.
e It is found that

wi = 0, w9 = SlA?C -+ SQA%,

which give the frequence A\w (w =1+ wj + wy + --+) and the
period T (T = 2w /Aw) of a halo orbit.

e To remove all secular terms, it is also necessary to specity
amplitude and phase-angle constraint relationships:

llAZQU + ZQAE + A =0,
v—¢ =mnr/2, m=1,3.



B Halo Orbits in 3rd Order Approximation

» 3rd order solution in Richardson [1980]:
xr = aglAi + aQQAz—Ax COS Tq
+(CL23A§j — a24A§) Cos 271 + (aglAi - aggAxAz) cos 377,
Yy = ]{AI SIn T1
-|—<b21A5% — bQQAz,) sin 271 + (bglA?% — ngAxAz,) SIN 377,
2 = omA, cosT
+0mdo1 Az Az (cos 2T — 3) + 5m(d32AZA% — dglA?;) COS 377 .

where 7y = A7+ ¢ and 0;p, =2 —m,m =1, 3.

e 2 solution branches are obtained according to
whether m =1 or m = 3.



B Halo Orbit Phase-angle Relationship

» Bifurcation manifests through phase-angle relationship:

e Form=1, A, > 0. Northern halo.
e For m =3, A, < 0. Southern halo.

e Northern & southern halos are mirror images across xy-plane.




B Halo Orbit Amplitude Constraint Relationship

» For halo orbits, we have amplitude constraint relationship
A2 + 1A% + A =0,

e Minimim value for A, to have a halo orbit (A, > 0) is \/|A /1],
which is about 200, 000 km.

e Halo orbit can be characterized completely by A..
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B Halo Orbit Period Amplitude Relationship

» The halo orbit period T (T = 27/ \w)
can be computed as a function of A,.

e Amplitude constraint relationship: ZlA% + ZQA% + A =0.

e Frequence connection w (w =14 wj + w9y + - -+ ) with
wy = 0, wy = $145 + 5947,
e ISEES halo had a period of 177.73 days.
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B Differential Corrections

» While 3rd order approximations provide much insight.
they are insuflicient for serious study of motion near L.

» Analytic approximations must be combined with
numerical techniques to generate an accurate halo orbit.

» This problem is well suited to a differential corrections process,

e which incorporates the analytic approximations
as the first guess
e in an iterative process

e aimed at producing initial conditions that lead to a halo orbit.



B Differential Corrections: Variational Equations
» Recall 3D CR3BP equations:
rT—2y=U, y+2x=U, z=U;
where U = (2 +4?)/2 + (1 — p)d; * + pd;, .

» It can be rewritten as 6 1st order ODEs: z = f(Z),
where 7 = (z y z & ¢ 2)! is the state vector.

» Given a reference solution x to ODE,

e variational equations which are linearized equations for
variations 0z (relative to reference solution) can be written as

0z(t) = Df(Z)0T = A(t)0%(t),

where A(t) is a matrix of the form

0 I
U2 |



B Differential Corrections: Variational Equations

» Given a reference solution x to ODE,

e variational equations can be written as

0z(t) = Df(z)6x = A(t)dZ(t), where

_ |0 I3
At) — [u QQ].
e Matrix €2 can be written
0 10
N=1—-100
0 00]

e Matrix U has the form
) U:C:C U:Uy U:Uz |
i sz Uzy Uzz |

and 1s evalutated on reference solution.




B Differential Corrections: State Transition Matrix

» Solution of variational equations is known to be of the form
0x(t) = O, 10)oz(ty),
where ®(t, t() represents state transition matrix from time #q to t.

e State transition matrix reflects sensitivity of state at time ¢ to
small perturbations in initial state at time ¢.

» To apply differential corrections,
need to compute state transition matrix along a reference orbit.

» Since
O(t, )0z (ty) = 0Z(t) = A(t)0z(t) = A(t)D(t, t0)0x(ty),
we obtain ODEs for ®(¢, ():
(t, tg) = A(t)D(t, ),
with
d(to, tg) = Ig.



B Differential Corrections: State Transition Matrix

» Therefore, state transition matrix along a reference orbit
0x(t) = (1, 10)0x(to),

can be computed numerically
by integrating simultaneously the following 42 ODEs:

oz = f(2),
O(,tg) = A(t)P(t, tp),

with initial conditions:



B Numerical Computation of Halo Orbit

» Halo orbits are symmetric about xz-plane (y = 0).

e They intersect this plan perpendicularlv(z = 2 = 0).
e Thus, initial state vector take the form

Ty = (CEO 0200 yp O)T.

» Obtain 1st guess for z( from 3rd order approximations.

e ODEs are integrated until trajectory cross xz-plane.

e For periodic solution, desired final state vector has the form
_ . N\T
xf:(xfOZnyfO) :

e While actual values for z 4 Zf may not be zero,

3 non-zero initial conditions (x(, zp, 7o) can be used
to drive these final velocities x . 2 f to zero.



B Numerical Computation of Halo Orbit

» Differential corrections use state transition matrix
to change initial conditions

5:73‘]0 — q)(tf, t0)0Z(-
e The change 07( can be determined by the difference between

actual and desired final states (0 p = :736} —Iy).

e 3 initial states (dx(, 020, 0y0)
are available to target 2 final states (02 ¢,0z).
e But it is more convenient to set 0zg = 0
and to use resulting 2 x 2 matrix to find dxq, 01p.

» Similarly, the revised initial conditions xg + 02
are used to begin a second iteration.

» This process is continued until © = 2y = 0
(within some accptable tolerance).

e Usually, convergence to a solution is achieved within 4 iterations.



B Numerical Computation of Lissajous Trajectories

» Howell and Pernicka [1987] used similar techniques
(3rd order approximation and differential corrections)
to compute lissajous trajectories.

» Gomez, Jorba, Masdemont and Sim6 [1991] used
higher order expansions to compute halo, quasi-halo and lissajous

orbits.
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B Veritcal Orbit

» A vertical orbit and its 3 projections.
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B Lissajous Orbits

» A lissajous orbit and its 3 projections.
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B Halo Orbits

» A halo orbit and its 3 projections.
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B Quasi-Halo Orbits

» A quasi-halo orbit and its 3 projections.
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B Orbit Structure around L

» Poincaré sections of center manifold of L1 corresponding to h =
0.2,0.5,0.6, 1.0.




