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� Halo Orbit and Its Computation

I From now on, we will focus on 3D CR3BP.

I We will put more emphasis on numerical computations,
especially issues concerning halo orbit missions,
such as Genesis Discovery Mission

I Outline of Lecture 5A and 5B:

• Importance of halo orbits.
• Finding periodic solutions of the linearized equations.
• Highlights on 3rd order approximation of a halo orbit.
• Using a textbook example to illustrate Lindstedt-Poincaré method.
• Use L.P. method to find a 3rd order approximation

of a halo orbit.
• Finding a halo orbit numerically via differential correction.
• Orbit structure near L1 and L2



� Importance of Halo Orbits: Genesis Discovery Mission

I Genesis spacecraft will

• collect solar wind from a L1 halo orbit for 2 years,
• return those samples to Earth in 2003 for analysis.

I Will contribute to understanding of origin of Solar system.
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� Important of Halo Orbits: Genesis Discovery Mission

I A L1 halo orbit (1.5 million km from Earth) provides uninterrupted
access to solar wind beyond Earth’s magnetoshphere.
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� Importance of Halo Orbits: ISEE-3 Mission

I Since halo orbit is ideal for studying solar effects on Earth, NASA
has had and will continue to have great interest in these missions.

I The first halo orbit mission, ISEE-3, was launched in 1978.

I ISEE-3 spacecraft monitored solar wind and other solar-induced
phenomena, such as solar radio bursts and solar flares,
about a hour prior to disturbance of space enviroment near Earth.



� Importance of Halo Orbits: Terrestial Planet Finder

I JPL has begun studies of a TPF misson at L2 involving
4 free flying optical elements and a combiner spacecraft.

I Interferometry: achieve high resolution by distributing
small optical elements along a lengthy baseline or pattern.

I Look into using a L2 halo orbit and its nearby quasi-halo orbits
for formation flight.



� Importance of Halo Orbits: Terrestial Planet Finder

I The L2 option offer several advantages:

• Additional spacecraft can be launched into formation later.
• The L2 offers a larger payload capacity.
• Communications are more efficient at L2.
• Observations and mission operations are simpler at L2.



� Importance of Halo Orbits: 3D Dynamical Channels

I In 3D dynamical channels theory,
invariant manifolds of a solid torus of quasi-halo orbits could play
similar role as invariant manifold tubes of a Lyapunov orbit.

I Halo, quasi-halos and their invariant manifolds could be key in

• understanding material transport throughout Solar system,
• constructing 3D orbits with desired characteristics.
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� 3D Equations of Motion

I Recall equations of CR3BP:

Ẍ − 2Ẏ = ΩX Ÿ + 2Ẋ = ΩY Z̈ = ΩZ

where Ω = (X2 + Y 2)/2 + (1 − µ)d−1
1 + µd−1
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� 3D Equations of Motion

I Equations for satellite moving in vicinity of L1 can be obtained by
translating the origin to the location of L1:

x = (X − 1 + µ + γ)/γ, y = Y/γ, z = Z/γ,

where γ = d(m2, L1)

I In new coordinate sytem, variables x, y, z are scale so that the
distance between L1 and small primary is 1.

I New independent variable is introduced such that s = γ3/2t.
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� 3D Equations of Motion

I CR3BP equations can be developed using Legendre polynomial Pn

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑

n≥3
cnρ

nPn(
x

ρ
)

ÿ + 2ẋ + (c2 − 1)y =
∂

∂y

∑

n≥3
cnρ

nPn(
x

ρ
)

z̈ + c2z =
∂

∂z

∑

n≥3
cnρ

nPn(
x

ρ
)

where ρ = x2+y2+z2, and cn = γ−3(µ+(−1)n(1−µ)( γ
1−γ)n+1).

• Useful if successive approximation solution procedure is carried
to high order via algebraic manipulation software programs.



� Analytic and Numerical Methods: Overview

I Lack of general solution motivated researchers to develop
semi-analytical method.

I ISEE-3 halo was designed in this way.
See Farquhar and Kamel [1973], and Richardson [1980].

I Linear analysis suggested
existence of periodic (and quasi-periodic) orbits near L1.

I 3rd order approximation, using Lindstedt-Poincaré method,
provided further insight about these orbits.

I Differential corrector produced the desired orbit
using 3rd order solution as initial guess.



� Periodic Solutions of Linearized Equations

I Periodic nature of solution can be seen in linearized equations:

ẍ− 2ẏ − (1 + 2c2)x = 0
ÿ + 2ẋ + (c2 − 1)y = 0

z̈ + c2z = 0

I The z-axis solution is simple harmonic, does not depend on x or y.

I Motion in xy-plane is coupled, has (±α,±iλ) as eigenvalues.

I General solutions are unbounded, but there is a periodic solution.
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� Periodic Solutions of Linearized Equations

I Linearized equations has a bounded solution (Lissajous orbit)

x = −Ax cos(λt + φ)
y = kAx sin(λt + φ)
z = Az sin(νt + ψ)

with k = (λ2 + 1 + 2c2)/2λ. (λ = 2.086, ν = 2.015, k = 3.229.)

I Amplitudes, Ax and Az, of in-plane and out-of-plane motion
characterize the size of orbit.



� Periodic Solutions of Linearized Equations

I If frequencies are equal (λ = ν), halo orbit is produced.

I But λ = ν only when amplitudes Ax and Az are large enough that
nonlinear contributions become significant.

I For ISEE3 halo, Az = 110, 000 km,
Ax = 206, 000 km and Ay = kAx = 665, 000 km.



� Halo Orbits in 3rd Order Approximation

I Halo orbit is obtained only when amplitudes Ax and Az are large
enough that nonlinear contributions make λ = ν.

I Lindstedt-Poincaré procedure has been used to find periodic solu-
tion for a 3rd order approximation of PCR3BP system.

ẍ− 2ẏ − (1 + 2c2)x =
3
2
c3(2x2 − y2 − z2)

+2c4x(2x2 − 3y2 − 3z2) + o(4),

ÿ + 2ẋ + (c2 − 1)y = −3c3xy − 3
2
c4y(4x2 − y2 − z2) + o(4),

z̈ + c2z = −3c3xz − 3
2
c4z(4x2 − y2 − z2) + o(4).

I Notice that for periodic solution, x, y, z are o(Az) with Az << 1
in normalized unit.



� Halo Orbits in 3rd Order Approximation

I Lindstedt-Poincaré method:

• It is a successive approximation procedure.
• Periodic solution of linearized equation (with λ = ν) will form

the first approximation.
• Richardson used this method to find the 3rd order solution.

x = a21A
2
x + a22A

2
z−Ax cos τ1

+(a23A
2
x − a24A

2
z) cos 2τ1 + (a31A

3
x − a32AxA

2
z) cos 3τ1,

y = kAx sin τ1
+(b21A

2
x − b22A

2
z) sin 2τ1 + (b31A

3
x − b32AxA

2
z) sin 3τ1,

z = δmAz cos τ1
+δmd21AxAz(cos 2τ1 − 3) + δm(d32AzA

2
x − d31A

3
z) cos 3τ1.

where τ1 = λτ + φ and δm = 2 −m,m = 1, 3.
• Details will be given later. Here, we will provide some highlights.



� Halo Orbit Amplitude Constraint Relationship

I For halo orbits, we have amplitude constraint relationship

l1A
2
x + l2A

2
z + ∆ = 0.

• For halo orbits about L1 in Sun-Earth system,
l1 = −1.59650314, l2 = 1.740900800 and ∆ = 0.29221444425.

• Halo orbit can be characterized completely by Az.
ISEE-3 halo orbit had Az = 110, 000 km.



� Halo Orbit Amplitude Constraint Relationship

I For halo orbits, we have amplitude constraint relationship

l1A
2
x + l2A

2
z + ∆ = 0.

• Minimim value for Ax to have a halo orbit (Az > 0) is
√

|∆/l1|,
which is about 200, 000 km (14% of normalized distance).



� Halo Orbit Phase-angle Relationship

I Bifurcation manifests through phase-angle relationship

ψ − φ = mπ/2, m = 1, 3.

• 2 solution branches are obtained according to
whether m = 1 or m = 3.



� Halo Orbit Phase-angle Relationship

I Bifurcation manifests through phase-angle relationship:

• For m = 1, Az > 0. Northern halo.
• For m = 3, Az < 0. Southern halo.
• Northern & southern halos are mirror images across xy-plane.



� Lindstedt-Poincaré Method: Duffing Equation

I To illustrate L.P. method, let us study Duffing equation:

• First non-linear approximation of pendulum equation
(with λ = 1)

q̈ + q + εq3 = 0.

• For ε = 0, it has a periodic solution

q = a cos t

if we assume the initial condition q(0) = a, q̇(0) = 0.
• For ε 6= 0, suppose we would like to look for

a periodic solution of the form

q =
∞∑

n=0
εnqn(t) = q0(t) + εq1(t) + ε2q2(t) + · · ·



� Lindstedt-Poincaré Method: Duffing Equation

I Finding a periodic solution for Duffing equation:

• By substituting and equating terms having same power of ε,
we have a system of successive differential equations:

q̈0 + q0 = 0,
q̈1 + q1 = −q30,
q̈2 + q2 = −3q20q1,

and etc.
• Then q0 = acos t, for q0(0) = a, q̇(0) = 0.
• Since

q̈1 + q1 = −q30 = −a3 cos3 t = −1
4
a3(cos 3t + 3cos t),

the solution has a secular term

q1 = −3
8
a3t sin t +

1
32
a3(cos 3t− cos t).



� Lindstedt-Poincaré Method: Duffing Equation

I Due to presence of secure terms, naive method such as expansions
of solution in a power series of ε would not work.

I To avoid secure terms, Lindstedt-Poincaré method

• Notices that non-linearity alters frequency λ
(corr. to linearized system) to λω(ε) (λ = 1 in our case).

• Introduce a new independent variable τ = ω(ε)t:

t = τω−1 = τ (1 + εω1 + ε2ω2 + · · · ).
• Expand the periodic solution in a power series of ε:

q =
∞∑

n=0
εnqn(τ ) = q0(τ ) + εq1(τ ) + ε2q2(τ ) + · · ·

• Rewrites Duffing equation using τ as independent variable:

q′′ + (1 + εω1 + ε2ω2 + · · · )2(q + εq3) = 0.



� Lindstedt-Poincaré Method: Duffing Equation

I By substituing q (in power series expansion)
into Duffing equation (in new independent variable τ ) and
equating terms with same power of ε,
we obtain equations for successive approximations:

q′′0 + q0 = 0,
q′′1 + q1 = −q30 − 2ω1q0,

q′′2 + q2 = −3q20q1 − 2ω1(q1 + q30) + (ω2
1 + 2ω2)q0,

and etc.

I Potential secular terms can be gotten rid of
by imposing suitable values on ωn.

• The general solution of 1st equation can be written as

q0 = acos(τ + τ0).

where a and τ0 are integration constants.



� Lindstedt-Poincaré Method: Duffing Equation

I Potential secular terms can be gotten rid of
by imposing suitable values on ωn.

• By substituting q0 = acos(τ + τ0) into 2nd equation, we get

q′′1 + q1 = −a3 cos3(τ + τ0) − 2ω1a cos(τ + τ0)

= −1
4
a3 cos 3(τ + τ0) − (

3
4
a2 + 2ω1)acos(τ + τ0).

• In previous naive method, we had ω1 ≡ 0 and
a secular term caused by cos t term.

• Now if we set ω1 = −3a2/8, we can get rid of
cos(τ + τ0) term and the ensuing secular term.

• Then

q1 =
1
32
a3 cos 3(τ + τ0).



� Lindstedt-Poincaré Method: Duffing Equation

I Potential secular terms can be gotten rid of
by imposing suitable values on ωn.

• Similarly, by substituting q1 = 1
32a

3 cos 3(τ + τ0)
into 3rd equation, we get

q′′2 + q2 = (
51
128

a4 − 2ω2)acos(τ + τ0)

+ (terms not giving secular terms).

• Setting ω2 = 51a4/256,
we obtain q2 free of secular terms, and so on.



� Lindstedt-Poincaré Method: Duffing Equation

I Therefore, to 1st order of ε, we have periodic solution

q = acos(τ + τ0) +
1
32
ε cos 3(τ + τ0) + o(ε2)

= acos(ωt + τ0) +
1
32
ε cos 3(ωt + τ0) + o(ε2).

I Notice that

ω = (1 + εω1 + ε2ω2 + · · · )−1

= {1 − εω1 − 1
2
ε2(2ω2 − ω2

1) + · · · }

= (1 − 3
8
εa2 − 15

256
ε2a4 + o(ε3).

I Lindstedt method consists in
successive adjustments of frequencies.



� Halo Orbit and Its Computation

I We have covered

• Importance of halo orbits.
• Finding periodic solutions of the linearized equations.
• Highlights on 3rd order approximation of a halo orbit.
• Using a textbook example to illustrate Lindstedt-Poincaré method.

I In Lecture5B, we will cover

• Use L.P. method to find a 3rd order approximation
of a halo orbit.

• Finding a halo orbit numerically via differential correction.
• Orbit structure near L1 and L2


