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B Halo Orbit and Its Computation

» From now on, we will focus on 3D CR3BP.

» We will put more emphasis on numerical computations,
especially issues concerning halo orbit missions,
such as Genesis Discovery Mission

» Qutline of Lecture 5A and 5HB:

e Importance of halo orbits.

e Finding periodic solutions of the linearized equations.

e Highlights on 3rd order approximation of a halo orbit.

e Using a textbook example to illustrate Lindstedt-Poincaré method.

e Use L.P. method to find a 3rd order approximation
of a halo orbit.

e Finding a halo orbit numerically via differential correction.

e Orbit structure near L1 and Lo



B Importance of Halo Orbits: Genesis Discovery Mission

» Genesis spacecraft will

e collect solar wind from a L halo orbit for 2 years,

e return those samples to Earth in 2003 for analysis.

» Will contribute to understanding of origin of Solar system.
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B Important of Halo Orbits: Genesis Discovery Mission

» A Lq halo orbit (1.5 million km from Earth) provides uninterrupted
access to solar wind beyond Earth’s magnetoshphere.
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B Importance of Halo Orbits: ISEE-3 Mission

» Since halo orbit is ideal for studying solar effects on Earth, NASA
has had and will continue to have great interest in these missions.

» The first halo orbit mission, ISEE-3, was launched in 1978.

» ISEE-3 spacecraft monitored solar wind and other solar-induced
phenomena, such as solar radio bursts and solar flares,
about a hour prior to disturbance of space enviroment near Earth.
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B Importance of Halo Orbits: Terrestial Planet Finder

» JPL has begun studies of a TPF misson at Lo involving
4 tree flying optical elements and a combiner spacecraft.

» Interferometry: achieve high resolution by distributing
small optical elements along a lengthy baseline or pattern.

» Look into using a Ly halo orbit and its nearby quasi-halo orbits
for formation flight.

Figure 1. Terrestrial Planet Finder



The Lo option offer several advantages:

Additional spacecraft can be launched into formation later.
The Lo offers a larger payload capacity.
Communications are more efficient at Lo.

Observations and mission operations are simpler at Lo.

Quasihalo Orbits



B Importance of Halo Orbits: 3D Dynamical Channels

» In 3D dynamical channels theory,
invariant manifolds of a solid torus of quasi-halo orbits could play

similar role as invariant manifold tubes of a Lyapunov orbit.
» Halo, quasi-halos and their invariant manifolds could be key in

e understanding material transport throughout Solar system,

e constructing 3D orbits with desired characteristics.
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B 3D Equations of Motion
» Recall equations of CR3BP:

X-2Y=Qy Y+2X=Qy Z=0Qy
where () = (X2+Y2)/2+(1—,u)d1_1+,ud2_1.




B 3D Equations of Motion

» Equations for satellite moving in vicinity of L1 can be obtained by
translating the origin to the location of Lq:

v=(X—-1+p+v)/v, y=Y/, z2=2Z/,
where v = d(mo, L)

» In new coordinate sytem, variables x,vy, 2z are scale so that the
distance between L1 and small primary is 1.

» New independent variable is introduced such that s = fyg/ ’t.
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B 3D Equations of Motion

» CR3BP equations can be developed using Legendre polynomial Py,

n>3
s 0 oo T
j+28+ (co— Ly = = cnp"Pu(~)
ay n>3 P
. 0 oo T
o= Y o)

n>3

where p = oy 427 and ¢ = 73+ (=1)"(1—p) ()" ).

e Useful if successive approximation solution procedure is carried
to high order via algebraic manipulation software programs.



B Analytic and Numerical Methods: Overview

» Lack of general solution motivated researchers to develop
semi-analytical method.

» ISEE-3 halo was designed in this way.
See Farquhar and Kamel [1973], and Richardson [1980].

» Linear analysis suggested
existence of periodic (and quasi-periodic) orbits near L.

» 3rd order approximation, using Lindstedt-Poincaré method,
provided further insight about these orbits.

» Differential corrector produced the desired orbit
using 3rd order solution as initial guess.



B Periodic Solutions of Linearized Equations

» Periodic nature of solution can be seen in linearized equations:
& —2y—(14+2c)x =0
j+2t 4+ (co— 1)y =0
Z4+coz =

» The z-axis solution is simple harmonic, does not depend on x or .
» Motion in zy-plane is coupled, has (+a, £i) as eigenvalues.

» General solutions are unbounded, but there is a periodic solution.
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B Periodic Solutions of Linearized Equations

» Linearized equations has a bounded solution (Lissajous orbit)

x
Y
z

— Ay cos(At + @)
kA sin(At + @)
A, sin(vt + 1)

with &£ = (A2 + 14 2¢9)/2X\. (A = 2.086, v = 2.015, k = 3.229.)

» Amplitudes, A, and A, of in-plane and out-of-plane motion
characterize the size of orbit.
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B Periodic Solutions of Linearized Equations

» If frequencies are equal (A = ), halo orbit is produced.

» But A = v only when amplitudes A, and A, are large enough that
nonlinear contributions become significant.

» For ISEE3 halo, A, = 110, 000 km,
Ay = 206,000 km and Ay = kA, = 665,000 km.
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B Halo Orbits in 3rd Order Approximation

» Halo orbit is obtained only when amplitudes A, and A, are large
enough that nonlinear contributions make A = v.

» Lindstedt-Poincaré procedure has been used to find periodic solu-
tion for a 3rd order approximation of PCR3BP system.

3
T —2y— (14 2c)x = 503(2x2 S

+2e42(22° — 3y* — 32%) + o(4),

. . 3
y+2z+(c2— 1)y = —3czry — §C4y(4332 —y” — 2°) + o(4),
3
24 coz = —3c3rz — §C4Z(4x2 — % — 22 + o(4).

» Notice that for periodic solution, x,y, z are o(A;) with A, << 1
in normalized unit.



B Halo Orbits in 3rd Order Approximation

» Lindstedt-Poincaré method:

e It is a successive approximation procedure.

e Periodic solution of linearized equation (with A = v) will form
the first approximation.

e Richardson used this method to find the 3rd order solution.

xr = CL21A:2U + aggAz—Ax COS T1

%—(CngA?,j — a24A§) cos 271 + (aglA% — CLgQA;CA§> cos 377,
y = kA,sinT

2 2\ o 3 N

+(bg1 A% — b A%) sin 271 + (b31 A, — b3g A A%) sin 377,
2 = omA, cos Ty

+0mdo1 Az Az (cos 2T — 3) + 5m(d32AZA?C — dglAi) COS 377 .
where 7y = A7+ ¢ and 0,y =2 —m,m =1, 3.

e Details will be given later. Here, we will provide some highlights.



B Halo Orbit Amplitude Constraint Relationship

» For halo orbits, we have amplitude constraint relationship
A2 + 1A% + A =0,

e For halo orbits about L1 in Sun-Earth system,
[1 = —1.59650314, I9 = 1.740900800 and A = 0.29221444425.

e Halo orbit can be characterized completely by A..
ISEE-3 halo orbit had A, = 110, 000 km.
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B Halo Orbit Amplitude Constraint Relationship

» For halo orbits, we have amplitude constraint relationship
A2 + 1A% + A =0,
e Minimim value for A, to have a halo orbit (A, > 0) is

VA,

which is about 200, 000 km (14% of normalized distance).
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Bifurcation manifests through phase-angle relationship
Y —¢=mm/2, m=13.

2 solution branches are obtained according to
whether m =1 or m = 3.
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B Halo Orbit Phase-angle Relationship

» Bifurcation manifests through phase-angle relationship:

e Form=1, A, > 0. Northern halo.
e For m =3, A, < 0. Southern halo.

e Northern & southern halos are mirror images across xy-plane.




B Lindstedt-Poincaré Method: Duffing Equation

» To illustrate L.P. method, let us study Duffing equation:
e First non-linear approximation of pendulum equation
(with A = 1)
i+q+eq =0
e For e = 0, it has a periodic solution

q = acost

if we assume the initial condition ¢(0) = a, ¢(0) = 0.
e For e # 0, suppose we would like to look for
a periodic solution of the form

®.0

0= "ault) = qlt) + eq(t) + Eqlt) + -

n=0



B Lindstedt-Poincaré Method: Duffing Equation

» Finding a periodic solution for Duffing equation:

e By substituting and equating terms having same power of e,
we have a system of successive differential equations:

qo+qo = 0,
i1+ = —qp,
i+ @2 = —3qhq1.
and etc.
e Then gy = acost, for qp(0) = a,¢(0) = 0.

e Since
1
g1 +q1 = —qg’ — —a’cos’t = —Zag(cos 3t 4 3cost),

the solution has a secular term

3 3, - 1 3
— ——a°’tsint + —a“(cos 3t — cost).
q1 Jatsint + o ( )



B Lindstedt-Poincaré Method: Duffing Equation

» Due to presence of secure terms, naive method such as expansions
of solution in a power series of € would not work.

» To avoid secure terms, Lindstedt-Poincaré method

e Notices that non-linearity alters frequency A
(corr. to linearized system) to Aw(e) (A =1 in our case).
e Introduce a new independent variable 7 = w(e)t:

—1

t=7Tw :T(1—|—€w1+62w2—|—”'>.

e Expand the periodic solution in a power series of e:

O

¢ = €"qu(7) = qo(7) + eqi(7) + €qa(7) + - -

n=0

e Rewrites Duffing equation using 7 as independent variable:

¢+ (1 +ew + e+ ) (g +eq’) =0



B Lindstedt-Poincaré Method: Duffing Equation

» By substituing ¢ (in power series expansion)
into Duffing equation (in new independent variable 7) and
equating terms with same power of e,
we obtain equations for successive approximations:

a9 +q0 = 0,

¢/ +q = —q) — 22190,

¢y + a0 = =3¢5q1 — 2wi(q1 + ) + (Wi + 2w) o,
and etc.

» Potential secular terms can be gotten rid of
by imposing suitable values on w,,.

e The general solution of 1st equation can be written as
qo = acos(T + ).

where a and 7 are integration constants.



B Lindstedt-Poincaré Method: Duffing Equation

» Potential secular terms can be gotten rid of
by imposing suitable values on wy,.

e By substituting ¢y = acos(7 + 1) into 2nd equation, we get

qi/ +q1 = —a’ 0083(7' + 719) — 2wia cos(T + )

1 3
— —Zag cos 3(T + 710) — (Za2 + 2w1)acos(T + 7).
e In previous naive method, we had w; = 0 and
a secular term caused by cost term.

e Now if we set w| = —3a2/87 we can get rid of
cos(T + 7p) term and the ensuing secular term.

e Then

1
g = —a’ cos 3(T + 7).

32



B Lindstedt-Poincaré Method: Duffing Equation

» Potential secular terms can be gotten rid of
by imposing suitable values on w,,.

o Similarly, by substituting q1 = ?%2@3 cos 3(T + 1)

into 3rd equation, we get

51
qé’ +qo = (@afL — 2w9)acos(T + 70)

+ (terms not giving secular terms).

o Setting w» = 5la*/256,
we obtain g9 free of secular terms, and so on.



B Lindstedt-Poincaré Method: Duffing Equation

» Therefore, to 1st order of €, we have periodic solution

1
q = acos(T + 1) + 55€ €08 3(T + 710) + o(€?)

1
= acos(wt + 79) + 55€ €08 3(wt + 1) + o(€?).

» Notice that
wo=(1+ew+ew+---)1

1
= {1 e — (2o ) 4o}
3 15
— (1 — éECLQ — %EQCL4 -+ 0(€3>.

» Lindstedt method consists in
successive adjustments of frequencies.



B Halo Orbit and Its Computation

» We have covered

e Importance of halo orbits.
e Finding periodic solutions of the linearized equations.
e Highlights on 3rd order approximation of a halo orbit.

e Using a textbook example to illustrate Lindstedt-Poincaré method.
» In LecturedbB, we will cover

e Use L.P. method to find a 3rd order approximation
of a halo orbit.
e Finding a halo orbit numerically via differential correction.

e Orbit structure near L1 and Lo



