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B Global Orbit Structure: Outline
» Outline of Lecture 3B:

e Construction of Poincaré map.

e Review of Horseshoe Dynamics.

e Symbolic Dynamics for the PCR3BP.

e Main Theorem on Global Orbit Structure.



B Global Orbit Structure: Overview

» Found heteroclinic connection between pair of periodic orbits.

» Find a large class of orbits near this (homo/heteroclinic) chain.

» Comet can follow these chanmnels in rapid transition.
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B Global Orbit Structure: Overview

» Symbolic sequence used to label itinerary of each comet orbit.

» Main Theorem: For any admissible itinerary,
e.g., (..., X, J,S,J, X, ...), there exists an orbit whose
whereabouts matches this itinerary.

» Can even specify number of revolutions the comet makes
around L1 & Lo as well as Sun & Jupiter.




Using the proof of Main Theorem as the guide, we develop
procedure to construct orbit with prescribed itinerary.

Example: An orbit with itinerary (X, J; S, J, X).
Petit Grand Tour of Jovian moons & Shoot the Moon.
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B Global Orbit Structure: Energy Manifold

» Schematic view of energy manifold.
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B Global Orbit Structure: Poincaré Map

» Reducing study of global orbit structure to study of discrete map.
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B Construction of Poincaré Map

» Construct Poincaré map P (tranversal to the flow)
whose domain U consists of 4 squares Uj.

» Squares Uy and Uy contained in y = 0,
each centers around a transversal homoclinic point.

» Squares Uy and Us contained in x = 1 — p,
each centers around a transversal heteroclinic point.
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B Global Orbit Structure near the Chain

» Consider invariant set A of points in U whose images and pre-
images under all iterations of P remain in U.

AN=ny2_P"U).
» Invariant set A contains all recurrent orbits near the chain.
It provides insight into the global dynamics around the chain.

» Chaos theory told us to first consider only the first forward and
backward iterations:

A =P HUynUn PYU).




B Review of Horseshoe Dynamics: Pendulum
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B Review of Horseshoe Dynamics: Forced Pendulum

MAGES P" (Hg), 0<n<N




Review of Horseshoe Dynamics: First Iteration
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B Review of Horseshoe Dynamics: First Iteration
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B Review of Horseshoe Dynamics: Second Iteration
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B Review of Horseshoe Dynamics: Second Iteration
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B Conley-Moser Conditions: Horseshoe-type Map

» For horseshoe-type map h satistying Conley-Moser conditions,
the invariant set of all iterations, Ay, = NS h"(Q),
can be constructed and visualized in a standard way.

e Strip condition: A maps “horizontal strips” H, Hq
to “vertical strips” Vp, Vi, (with horizontal boundaries to hor-
izontal boundaries and vertical boundaries to vertical bound-
aries).

e Hyperbolicity condition: h has uniform contraction
in horizontal direction and expansion in vertical direction.
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B Conley-Moser Conditions: Horseshoe-type Map

» Invariant set of first iterations /\}L — Y (D)NnDnAY(D)
has 4 squares, with addresses (0;0), (1;0), (1;1), (0;1).

» Invariant set of second iterations has 16 squares
contained in 4 squares of first stage.

» This process can be repeated ad infinitum
due to Conley-Moser Conditions.

» What remains is invariant set of points Aj;, which are in 1-to-1
corr. with set of bi-infinite sequences of 2 symbols (... ,0;1,...).
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B Horizontal (H}') & Vertical (V2!) Strips

» Recall: image of abutting arc of stable manifold cut
spiral infinitely many times towards unstable manifold cut.




B Horizontal (Hf@]) & Vertical (VT%) Strips

» Hence, U N P~HU) has 8 families of horizontal strips H%j .

e Each point in horizontal strip sz is in U; and will wind n
times around an equilibrium point before reaching Uj;.

o We can associate each point in H,; both an address in U
and an itinerary (;u;,n,u;).




B Horizontal (Hf@]) & Vertical (VT%) Strips

» Similarly, U N PY(U) consists of 8 families of vertical strips Vf,%z

e Each point in vertical strip Vf,@/i came from U; and has wound
m times around an equilibrium point before arriving at U;.

o We can associate each point in V;, both an address in U
and an itenerary (u;, m;u;).




B Invariant Set A! under First Interations

» The set At = P~HU)YnU N PYD)
is intersections of all horizontal and vertical strips.

e Each point of anlﬂ% — H}2N V13 has an itenerary

(ug, m; u1, n, up) which is a concatenation of (uy;n, ug) (H}?)
and (ug,m; u1) (V3.




B Application of Symbolic Dynamics

» Labeling “squares” Q%% with (w3, m;uy,n,u9) is in line with
characterizing orbits via bi-infinite sequences of “symbols”.

» To keep track of itenerary w.r.t. 4 squares U;, we use subshift
with 4 symbols u;, (... ,u3;uy, u9, ... ), and a transition matrix
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B Application of Symbolic Dynamics

» To keep track of number of revolutions around L or Lo,
we use full shift with integer symbols, (... ,m;n,...).

» “‘Squares” Q%;]fz in 1-to-1 corr. with sequences (u;, m;u;,n, ug).

)

» Symbolic sequence is used to label address of each “square’
and identifies itenerary of its orbits.

» To generalize beyond first iteration, need to review chaos theory.




B Conley-Moser Conditions: Horseshoe-type Map

» For horseshoe-type map h satistying Conley-Moser conditions,
the invariant set of all iterations, Ay, = NS h"(Q),
can be constructed and visualized in a standard way.

e Strip condition: A maps “horizontal strips” H, Hq
to “vertical strips” Vp, Vi, (with horizontal boundaries to hor-
izontal boundaries and vertical boundaries to vertical bound-
aries).

e Hyperbolicity condition: h has uniform contraction
in horizontal direction and expansion in vertical direction.
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B Conley-Moser Conditions: Horseshoe-type Map

» Invariant set of first iterations /\}L — Y (D)NnDnAY(D)
has 4 squares, with addresses (0;0), (1;0), (1;1), (0;1).

» Invariant set of second iterations has 16 squares
contained in 4 squares of first stage.

» This process can be repeated ad infinitum
due to Conley-Moser Conditions.

» What remains is invariant set of points Aj;, which are in 1-to-1
corr. with set of bi-infinite sequences of 2 symbols (... ,0;1,...).

.00, ..1,0; .11 ..01;




B Generalized Conley-Moser Conditions

» Proved P satisfies Generalized Conley-Moser conditions:
e Strip condition: it maps “horizontal strips” H,,ij
to “vertical strips” Vj]'.

e Hyperbolicity condition: it has uniform contraction
in horizontal direction and expansion in vertical direction.




B Generalized Conley-Moser Conditions

» Shown are invariant set A! under first iteration.

» Since P satisfies Generalized Conley-Moser Conditions,
this process can be repeated ad infinitum.

» What remains is invariant set of points A which are in 1-to-1
corr. with set of bi-infinite sequences (... ,u;, m;u;,n, u, ... ).




B Global Orbit Structure: Main Theorem

» Main Theorem: For any admissible itinerary,
e.g., (..., X,1,J,0;S,1,J,2, X ...), there exists an orbit whose
whereabouts matches this itinerary.

» Can even specify number of revolutions the comet makes
around Sun & Jupiter.




B Global Orbit Structure: Dynamical Channels

» Found a large class of orbits near homo/heteroclinic chain.

» Comet can follow these channels in rapid transition.
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Using the proof of Main Theorem as the guide, we develop
procedure to construct orbit with prescribed itinerary.

Example: An orbit with itinerary (X, J; S, J, X).
Petit Grand Tour of Jovian moons & Shoot the Moon.
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B Construction of (J,X:;J,S,J) Orbits
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