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Outline for Lecture 2A

• Equations of motion (using both Langrangian and Hamiltonian
approaches).

• Energy and the Jacobi constant.

• Equilibrium points and their stability.

• Hill’s region.

The PCR3BP

• Stands for:
Planar Circular Restricted Three Body Problem .

• Describes the motion of a body moving in the gravitational field of
two primaries that are moving in circles.
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• The two primaries could be the Sun and Jupiter, the Sun and
Earth, etc.

• Let µ be the ratio between the mass of the Earth and the mass of
the Sun-Earth system,

µ =
mJ

mJ +mS
,

• For the Sun-Jupiter system, µ = 9.537 × 10−4.

• For the Sun-Earth system, µ = 3.03591 × 10−6.

• The primaries rotate about their center of mass, with angular ve-
locity normalized to 1.

• We will usually use a rotating coordinate system with origin at the
primaries center of mass so that S and J are located at the points
(−µ, 0) and (1 − µ, 0).
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When is the PCR3BP an appropriate starting point?

� Astronomical Phenomena. For phenemena like resonance tran-
sition, we consider it an adequate starting model.

• Comets of interest are mostly heliocentric, but their perturba-
tion are dominated by Jupiter’s gravitation .

• Their motion is nearly in Jupiter’s orbital plane , and the small
eccentricity of Jupiter’s orbit (i.e., it is nearly circular) plays little
role during resonant transition.

• In a more detailed study, and for verification that one can really
believe the PCR3B model, one needs to to take into account the
3D effects and the perturbation from Saturn.
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� For Space Mission Design. For systems such as the Genesis
Discovery Mission and Shoot the Moon :

• For Genesis, the knowledge about heteroclinic behavior provided
the necessary insight in searching for the desired solution.

• For Shoot the Moon, the study of PCR3BP provides a systematic
method for the numerical construction of the trajectory.

• In both cases, the trajectores found in the simpler models provided
the starting point for the differential correction process to produce
the final trajectory.
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Why use Rotating Frames?

� Visual.

• It is quite common to see much more structure in carefully chosen
rotating frames than in stationary ones, even in cases where
there is no “obvious” preferred rotating frame. This is well illus-
trated by the DSP: double spherical pendulum .

• Look at the accompanying movie clips on the DSP.

• In the Sun-Jupiter rotating frame, one can clearly observe that
near L1 and L2 the comet Oterma makes a transition between
the exterior and the interior region.

• Also, one can see how closely the orbit of Oterma follows the
plots of invariant manifolds of L1 and L2 in the position space.
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� Analytical

• Analytically, in this preferred Sun-Jupiter rotating frame, the equa-
tions of motion of the comet is autonomous. It has an integral of
motion and it has equilibrium points which allow us to bring in all
the tools of dynamical system theory. In the inertial frame these
equilibrium points appear as periodic orbits .
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Equations of Motion of the PCR3BP

� Geometry of Rotating Frames.

• Let XY be the inertial frame and xy be the rotating frame. As-
sume that they coincide at t = 0. Then (since the angular velocity
is unity)

X = x cos t− y sin t,

Y = x sin t + y cos t.

The situation is the same as one encounters in Calculus (see the
figure).
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Figure 1: The geometry of rotating coordinates.

• In the inertial frame, the Sun is at (−µ, 0), Jupiter is at (1− µ, 0)
when t = 0. At general times,

(X1, Y1) = (−µ cos t,−µ sin t),

(X2, Y2) = ((1 − µ) cos t, (1 − µ) sin t)

are the positions of the Sun and Jupiter respectively in the inertial
frame.
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• Let (X, Y ) be the postion of the comet (or spacecraft, etc) in the
inertial frame, then the gravitational potential due to the Sun and
Jupiter is (in normalized units)

U = −1 − µ
r1

− µ

r2
where r1 and r2 are the distances of the comet from the Sun and
Jupiter respectively and are given by

r21 = (X + µ cos t)2 + (Y + µ sin t)2,

r22 = (X − (1 − µ) cos t)2 + (Y − (1 − µ) sin t)2.
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� Equations of Motion

• Method 1: Newtonian approach–inertial frame. In the
inertial frame, the Newtonian equations of motion are

Ẍ = −UX, Ÿ = −UY ,
where UX and UY are the partial derivatives of U with respect to
X, Y respectively. This system is non-autonomous . One can
now make a transformation of variables to the variables (x, y) by
direct computation (see Marsden and Ratiu [1999] for this type of
calculation). This procedure leads to the same equations of motion
in terms of (x, y) as the methods below.

• Recall the general form of the Euler-Lagrange equations :

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,
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where the mechanical system is described by generalized coordi-
nates (q1, . . . , qn). Often one chooses the Lagrangian to be the
kinetic minus the potential energies. See Marsden and Ratiu [1999]
or other books on mechanics for a discussion.

• Method 2: Lagrangian approach–inertial frame. In the
inertial frame, the Lagrangian is kinetic minus potential energies:

L(X, Y, Ẋ, Ẏ , t) =
1

2
(Ẋ2 + Ẏ 2) − U(X, Y, t)

The Euler-Lagrange equations are exactly the same as the Newto-
nian equtions.

• Method 3: Lagrangian approach—rotating frame. In
the rotating frame, the Lagrangian LR is given by

LR(x, y, ẋ, ẏ) =
1

2
((ẋ− y)2 + (ẏ + x)2) − U(x, y),
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where the gravitational potential in rotating coordinates is

U = −1 − µ
r1

− µ

r2
.

Reason:

Ẋ = (ẋ− y) cos t− (ẏ + x) sin t,

Ẏ = (x + ẏ) cos t− (ẋ− y) sin t,

which yields Ẋ2 + Ẏ 2 = (ẋ − y)2 + (ẏ + x)2. Also, since both the
distances r1 and r2 are invariant under rotation, we have

r21 = (x + µ)2 + y2,

r22 = (x− (1 − µ))2 + y2.
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Figure 2: The distances r1 and r2 in the rotating frame.

• The theory of moving systems says that one can simply write
down the Euler-Lagrange equations in the rotating frame and one
will get the correct equations. It is a very efficient method.
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• In the present case, the Euler-Lagrange equations are given by
d

dt
(ẋ− y) = ẏ + x− Ux,
d

dt
(ẏ + x) = −ẋ + y − Uy.

After simplification, we have

ẍ− 2ẏ = −U eff
x , ÿ + 2ẋ = −U eff

y

where

U eff = U(x, y) − 1

2
(x2 + y2)

is the augmented or effective potential and the subscripts
denote its partial derivatives.

This form of the equations is discussed in detail in Szebeheley [1967]
and may be more familiar to the astronomy and astrodynamics
communities.
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• Recall that whenever one has a Lagrangian system, one can trans-
form it to Hamiltonian form by means of the Legendre trans-
formation :

pi =
∂L

∂q̇i
; H(qi, pi) =

n∑
i=1

piq̇
i − L(qi, pi)

to get the equations in Hamiltonian form

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi

• Method 4: Hamiltonian approach–rotating frame
In our case, the Legendre transformation is given by

px =
∂LR
∂ẋ

= ẋ− y,

py =
∂LR
∂ẏ

= x + ẏ,
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we obtain the Hamiltonian function

HR(x, y, px, py) = pxẋ + pyẏ − LR
=

1

2
((px + y)2 + (py − x)) + U eff(x, y).

where px and py are the conjugate momenta.

Hence the Hamiltonian equations are given by

ẋ =
∂HR
∂px

= px + y,

ẏ =
∂HR
∂py

= py − x,

ṗx = −∂HR
∂x

= py − x− U eff
x ,

ṗy = −∂HR
∂y

= −px − y − U eff
y .



18

One can also transform from the inertial frame to the rotating frame
by using the theory of canonical transformations. This method, while
the one classically used, is more complicated. See Whittaker’s book
for details.

Notice that both the Lagrangian and the Hamiltonian form of the
equations in rotating coordinates (x, y) give an autonomous system.
Viewed as a dynamical system, it is a four dimensional dynamical
system in either (x, y, ẋ, ẏ) or (x, y, px, py) space.

� Energy Integral and Jacobi Constant.
Since equations of motion of the PCR3BP are Hamiltonian and

autonomous, they have an energy integral of motion.

Notation. We use H when we regard the energy as a function of
positions and momenta and E when we regard it as a function
of the positions and velocity .
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In the astronomy and astrodynamics communities, it is called the
Jacobi integral , which is given by

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) − 2U eff(x, y) = −2E(x, y, ẋ, ẏ).

Usually in those communities, the existence of the Jacobi integral
is derived directly from the equations of motion. The computation is
straightforward:

d

dt
(ẋ2 + ẏ2) = 2(ẋẍ + ẏÿ) = 2

d

dt
(−U eff),

so we get

0 =
d

dt

(
−2U eff(x, y) − (ẋ2 + ẏ2)

)
=
d

dt
C
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Equilibria of the PCR3BP

• To find equilibria, we set the right hand sides of the system equal
to zero.

• Since the system is

ẋ = vx,

ẏ = vy,

v̇x = 2vy − U eff
x ,

v̇y = −2vx − U eff
y .

we see that equilibia in (x, y, ẋ, ẏ) space are of the form (xe, ye, 0, 0),
where (xe, ye) are critical points of the effective potential
function U eff.

• The system has five equilibrium points , three collinear
equilibria on the x-axis, called L1, L2, L3 and two equilateral
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points called L4, L5.

• These were discovered by Euler and Lagrange in the 1700s.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x (nondimensional units, rotating frame)

y 
(n

on
di

m
en

si
on

al
 u

ni
ts

, r
ot

at
in

g 
fr

am
e)

mS = 1 - µ mJ = µ

S J

Jupiter’s orbit

L2

L4

L5

L3 L1  

comet

Figure 3: The equilibrium points in the PCR3BP.
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These equilibria can be found as follows.

� The equilateral points

• First, seek solution that do not lie on the line joining the primaries,
i.e., y �= 0.

• Using the distances r1, r2 as variables and the relation

x2 + y2 = (1 − µ)r21 + µr22 − µ(1 − µ)

we see that U eff can be written as

−U eff(r1, r2) =
1

2
(1 − µ)r21 +

1

2
µr22 +

1 − µ
r1

+
µ

r2
.

• Using the chain rule, it is straightforward to show that if y �=
0, then U eff(r1, r2) and U eff(x, y) have the same critical points.
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Solving the following systems

0 = −U eff
r1 = µr2 −

µ

r22
,

0 = −U eff
r2 = (1 − µ)r1 −

(1 − µ)

r21
,

we get the unique solution r1 = r2 = 1.

• This solution lies at the vertex of an equilateral triangle whose base
is the line segment joining the two primaries. By convention, the
one in the upper half-plane is denoted L4, and the one in the lower
half-plane is denoted L5. These are attributed to Lagrange.
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� The Collinear Points

• Now consider equilibria along the line of primaries where y = 0.

• In this case the effective potential function has the form

−U eff(x, 0) =
1

2
x2 +

1 − µ
|x + µ| +

µ

|x− 1 + µ|.

• By elementary calculus, it can be determined that U eff(x, 0) has
precisely one critical point in each of the following three intervals:

◦ (−∞,−µ),

◦ (−µ, 1 − µ) and

◦ (1 − µ,∞).

• A sketch of the graph of U eff(x, y) is given in the figure. These
three collinear equilibria are attributed to Euler and are denoted
by L1, L2, L3. For more details, see Meyer and Hall [1992].
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Figure 4: Graph of the effective potential for the Sun-Jupiter system.

� Locating the Collinear Equilibria.
Computation of the values of the abscissas of the collinear points

requires the solution of d
dxU

eff(x, 0) = 0, which is a quintic equation
after simplification.

Historically, a lot of effort has been spent in finding series expansions
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for such solutions. Here, we will write down two of those that are most
useful for us, namely, the distances d(m2, L1), d(m2, L2) between the
smaller primary and the L1 and L2 respectively.

d(m2, L1) = ν

(
1 − 1

3
ν − 1

9
ν2 + . . .

)
,

d(m2, L2) = ν

(
1 +

1

3
ν − 1

9
ν2 + . . .

)
,

where ν = (µ3)1/3. Of course locating these points numerically is no
problem.

� Linearization around L1 and L2 Linearizing the PCR3BP
equations around one of the equilibrium points L1, or L2, we get
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the linear equations

ẋ = vx,

ẏ = vy,

v̇x = 2vy + ax,

v̇y = −2vx − by,
where the values of a and b are specific values for each of the equilibria.
For example, they are approixmately a = 9.892 and b = 3.446 for L1
in the Sun-Jupiter system.

� Instability of L1 and L2 It is straightforward to find that the
eigenvalues of this linear system have the form ±λ and ±iν where λ
and ν are positive constants. Therefore, all the collinear equilibria are
unstable and have the characteristic of saddle × center.
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The Energy Manifold and Hill’s region

� How to obtain Hill’s region.

• Recall that the system has an integral

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + U eff(x, y) = −C

2
.

• This energy integral will help us determine the region of possible
motion, i.e., which region in which the comet can possibly move
along and the region in which it is forbidden to move.

• The first step is to look at the surface of the effective potential
again and make some remarks about it.
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Figure 5: Graph of the effective potential for the Sun-Jupiter system.

◦ Near either the Sun and Jupiter, we have a potential well.

◦ Far away from the Sun-Jupiter system, the term that corre-
sponds to the centrifugal force dominates, we have another po-
tential well.

◦ Moreover, by applying multivariable calculus, one finds that
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there are 3 saddle points at L1, L2, L3 and 2 maxima at L4
and L5.

◦ Let Ei be the energy at Li; then

E5 = E4 > E3 > E2 > E1.

� Five cases. Fixing the energy E is like fixing a height in this plot
of the effective potential.

Contour plots give 5 cases of Hill’s region. The white area is the
Hill’s region and the gray area is the forbidden region .
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• Case 1. If the energy of the comet is below E1, the comet cannot
move between the Sun and Jupiter region.
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Figure 6: Hill’s region—Case 1.
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• Case 2. If the energy is just above E1, the comet can now move
between the Sun and Jupiter region. But it is still barred from
moving between the Sun and Exterior region.
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Figure 7: Hill’s region—Case 2.
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• Case 3. The case that concerns us the most is when the energy
is just above E2. Now the comet can move between the Sun and
Exterior region passing through Jupiter region.
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Figure 8: Hill’s region—Case 3.
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• Case 4. In this case the energy is energy is above E3 but below
that of E4 and E5.
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Figure 9: Hill’s region—Case 4.

Case 5: If E > E4 = E5, the forbidden region dissappears.
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The 3-Dimensional CR3BP Problem

• Of course it is important that one extends the planar problem to
the three dimensional case as well. The planar problem sits inside
this larger model as an invariant subsystem .

• Using nondimensional units, the equations of motion are

ẋ = u

ẏ = v

ż = w

u̇ = 2y − U eff
x

v̇ = −2x− U eff
y

ẇ = −U eff
z ,
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where

−U eff =
1

2
(x2 + y2) +

1 − µ
d1

+
µ

d2

d1 =
(
(x + µ)2 + y2 + z2

)1/2

d2 =
(
(x− 1 + µ)2 + y2 + z2

)1/2

and where µ is defined as before. As before, time is scaled by the
period of the primaries orbits (T/2π, where T = 1 year), positions
are scaled by the Sun-Earth distance (L = 1.49597927·108km), and
velocities are scaled by the Earth’s average orbital speed around
the Sun (2πL/T = 29.80567km/s).


