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Structure of the Talk

• Part 1 : Homoclinic and heteroclinic structures related to the
collinear libration points in the the three body problem and its
relation to resonant transition of comets and the Genesis mission.

• Part 2 : Petit Grand Tour of the Moons of Jupiter (Ganymede
and Europa) and Lunar Capture (Efficient missions to the Moon).

• Part 3 : Optimal control for halo orbit insertion. (Collaboration
with Radu Serban, Linda Petzold and Roby Wilson)
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• C. Conley, R. McGehee

• R. Farquhar et al.
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More Information and References

• Part 1:

Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [1999]
Heteroclinic connections between periodic orbits
and resonance transitions in celestial mechanics ,

available from
http://www.cds.caltech.edu/ ˜marsden/

• Parts 2 and 3 are covered in papers in preparation.
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Connecting Orbits

� Simple Pendulum

• Equations of a simple pendulum are θ̈ + sin θ = 0.

• Write as a system in the plane ;

dθ

dt
= v

dv

dt
= − sin θ

• Solutions are trajectories in the plane.

• The resulting phase portrait shows some important basic fea-
tures:



connecting 
(homoclinic) 
orbit

saddle
point

upright pendulum
  (unstable point)

downward pendulum
       (stable point)

θ

θ = v



7

� Higher Dimensional Versions are Invariant Manifolds

Stable Manifold

Unstable Manifold
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� Periodic Orbits

• Can replace fixed points by periodic orbits and do similar things.
For example, stability means nearby orbits stay nearby.

x0

periodic orbit

nearby trajectory winding towards the periodic orbit



9

� Invariant Manifolds for Periodic Orbits

• Periodic orbits have stable and unstable manifolds .

Unstable Manifold (orbits move away from the periodic orbit)

Stable Manifold (orbits move toward the periodic orbit)
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Resonant Transitions

� Jupiter Comets–such as Oterma

• Comets moving in the vicinity of Jupiter do so mainly under the
influence of Jupiter and the Sun–i.e., in a three body problem.

• These comets sometimes make a rapid transition from out-
side to inside Jupiter’s orbit.

• Captured temporarily by Jupiter during transition.

• Exterior (2:3 resonance) → Interior (3:2 resonance).

• The next figure shows the orbit of Oterma (AD 1915–1980) in an
inertial frame
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• Next figure shows Oterma’s orbit in a rotating frame (so Jupiter
looks like it is standing still) and with some invariant manifolds in
the three body problem superimposed.
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• Now lets look at two movies of the trajectory of comet
Oterma , first in an inertial frame and then in a frame ro-
tating with the sun and Jupiter .
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Movie: Oterma in inertial

frame
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Movie: Oterma in a

rotating frame
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The Planar Restricted Three Body Problem–PCR3BP

� General Comments

• The two main bodies could be the Sun and Jupiter , or the
Sun and Earth , etc. The total mass is normalized to 1; they
are denoted mS = 1 − µ and mJ = µ, so 0 < µ < 1.

◦ The two main bodies rotate in the plane in circles counterclock-
wise about their common center of mass and with angular ve-
locity ω (also normalized to one).

◦ The third body, the comet or the spacecraft , has mass zero
and is free to move in the plane.

• The planar restricted three body problem is used for simplicity.
Generalization to the three dimensional problem is of course
important, but many of the effects can be described well with the
planar model.
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� Equations of Motion

• Notation: Choose a rotating coordinate system so that

◦ the origin is at the center of mass

◦ the Sun and Jupiter are on the x-axis at the points (−µ, 0)
and (1 − µ, 0) respectively–i.e., the distance from the sun to
Jupiter is normalized to be unity.

◦ Let (x, y) be the position of the comet in the plane relative to
the positions of the Sun and Jupiter.

◦ distances to the Sun and Jupiter:

r1 =
√

(x + µ)2 + y2 and r2 =
√

(x − 1 + µ)2 + y2.
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• Kinetic energy (wrt inertial frame) in rotating coordinates:

K(x, y, ẋ, ẏ) =
1

2

[
(ẋ − ωy)2 + (ẏ + ωx)2

]

• The Lagrangian is K.E. − P.E., given by

L(x, y, ẋ, ẏ) = K(x, y, ẋ, ẏ) − V (x, y),

where

V (x, y) = −1 − µ

r1
− µ

r2
.

• Euler-Lagrange equations :

ẍ − 2ωẏ = −∂Vω

∂x
, ÿ + 2ωẋ = −∂Vω

∂y

where the augmented potential is

Vω = V − ω2(x2 + y2)

2
.
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• Legendre transform to get Hamiltonian form .

• The Hamiltonian ( �= K.E. + P.E.) is

H =
(px + ωy)2 + (py − ωx)2

2
+ Vω(x, y),

• Relationship between momenta and velocities :

ẋ =
∂H

∂px
= px + ωy; ẏ =

∂H

∂py
= py − ωx.

• Remaining dynamical equations :

ṗx = −∂H

∂x
= py − ωx − ∂Vω

∂x

ṗy = −∂H

∂y
= −px − ωy − ∂Vω

∂y
.

• Jacobi constant is often written C = −2H .
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� Five Equilibrium Points

• Three collinear (Euler, 1750) on the x-axis— L1, L2, L3

• Two equilateral points (Lagrange, 1760)— L4, L5.
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� Stability

• Eigenvalues of the linearized equations at L1, L2, L3 have one
real and one imaginary pair. The stable and unstable man-
ifolds of these equilibria play an important role.

• Associated periodic orbits are called the Liapunov orbits–
Genesis targets a 3D counterpart, the halo orbits . Their sta-
ble and unstable manifolds are also important.

• For space mission design, the most interesting equilibria are the
unstable ones, not the stable ones!

Consider the dynamics plus the control!

Control often makes unstable objects, not attractors, of inter-
est!1 Under proper control management they are incredibly
energy efficient .

1This is related to control of chaos ; see Bloch, A.M. and J.E. Marsden [1989] Controlling homoclinic orbits,
Theor. & Comp. Fluid Mech. 1, 179–190.
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� Hill’s Regions

• Our main concern is the behavior of orbits whose energy is just
above that of L2.

• The Hill’s region is the projection of this energy region onto
position space.

• For this case, the Hill’s region contains a “neck” about L1 and
L2. This neck region and its relation to the global orbit structure
is critical: it was studied in detail by Conley, McGehee and
the Barcelona group .

• Orbits with energy just above that of L2 can be transit orbits,
passing through the neck (Jupiter) region between the interior
region (inside Jupiter’s orbit) and the exterior region (out-
side Jupiter’s orbit). They can also be nontransit orbits or
asymptotic orbits
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� Heteroclinic Connection

• These are located numerically by finding an intersection of
the stable and unstable manifolds using a Poincaré cut.

• The stable and unstable manifolds are those of Liapunov orbits
with the same Jacobi constant .
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� Example: Construction of (J,X;J,S,J) Orbits

• Illustrate the construction of orbits with given itineraries

• Closely related to constructions in symbolic dynamics

• Invariant manifold tubes separate transit from nontransit
orbits—these tubes and their properties are important!

• Green curve = Poincaré cut of L1 stable manifold.

• Red curve = cut of L2 unstable manifold.

• Any point inside the intersection region ∆J gives rise to an
(X;J,S) orbit.
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• Continue with further Poincaré sections on the inside or outside
as appropriate to locate points that satisfy the conditions for the
remaining itinerary.
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• One can numerically implement this procedure.

• Conley [1968] and McGehee [1969] proved the existence of
homoclinic orbits for both the interior and exterior
region .

• Llibre, Martinez and Simó [1985] showed analytically the ex-
istence of transversal symmetric (1,1)-homoclinic or-
bits in the interior region under appropriate conditions.

• For our problem, we need to find transversal homoclinic orbits
in both interior and exterior regions as well as transversal hete-
roclinic cycles for the L1 and L2 Liapunov orbits.

• Numerical techniques of Gómez, Jorba, Masdemont and Simó
[1993] play an important role.
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• Comets like Oterma are

◦ mostly heliocentric, with the key perturbations are dominated
by Jupiter’s gravitation.

◦ Motion is very nearly in Jupiter’s orbital plane

◦ Jupiter’s small eccentricity (.0483) plays little role during the fast
resonance transition (less than or equal to one Jupiter period in
duration).

◦ The PCR3BP is an adequate starting model for illuminating the
essence of the resonance transition process.

• We were motivated by the paper of Belbruno and (Brian) Mars-
den [1995]; related reference is that of Liao, Saari and Xia [1996],
etc. (In our explanations, we don’t invoke anything about Arnold
diffusion—resonant transition is much simpler than this).
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The Genesis Discovery Mission

� Some General Comments

• Mission Purpose. To gather solar wind samples and to return
them to Earth for analysis.

• Mission Constraint. Must return in Utah during the daytime

• Will descend with a parachute for a helicopter snatch

• Must have a lunar swingby contingency in case of bad weather

• Highly energy efficient (very small ∆v required).

• One wants to make use of the dynamical sensitivity to design low
cost trajectories—the Genesis trajectory is one example.
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� Mission Trajectory

• Final trajectory closely resembles the following four part mission
design:

◦ 1. insertion onto an L1 halo orbit stable manifold .

◦ 2. using saddle point controllers, remain on the halo orbit for
about 2 years (4 revolutions)

◦ 3. return to a near halo orbit around L2 via a near hetero-
clinic connection

◦ 4. return to Earth on a near impact orbit (unstable manifold of
a halo orbit around L2.

• Final trajectory uses three dimensional problem and takes into
account all the major bodies in the solar system.
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Genesis movie
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• Potential planet-impacting asteroids may utilize dynamical chan-
nels as a pathway to Earth from nearby heliocentric orbits. This
phenomena has been observed recently in the impact of comet
Shoemaker-Levy 9 with Jupiter.

• These ideas apply to any planet or moon system . Mission
flexibility is achieved post-launch making use of dynamical sensitiv-
ity — miniscule fuel expenditures can lead to dramatically different
trajectories. One could turn a near-Earth mission into an asteroid
rendezvous and return mission in situ with an appropriately placed
small thrust. Rather than being a hindrance to orbital stability,
sensitivity facilitates mission versatility .

• Use homoclinic and heteroclinic structures to understand and com-
pute transport rates of various objects around the solar system
(eg, between Mars and Earth).
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• Zodiacal Dust Cloud. Numerical simulations of the orbital
evolution of asteroidal dust particles show that the Earth is embed-
ded in a circumsolar ring of asteroidal dust known as the zodiacal
dust cloud (Dermott et al. [1994]). Simulations and observations
reveal that the zodiacal dust cloud has structure. Viewed in the
Sun-Earth rotating frame, there are several high density clumps
(∼10% greater than the background) which are mostly evenly dis-
tributed throughout the Earth’s orbit. The simulations consid-
ered the gravitational effects of the actual solar system and non-
gravitational forces: radiation pressure, Poynting-Robertson light
drag, and solar wind drag. The dust particles are believed to spiral
in towards the Sun from the asteroid belt, becoming trapped tem-
porarily in exterior mean motion resonances with the Earth. They
are then scattered by close encounters with the Earth leading to
further spiraling towards, and eventual collision with, the Sun.
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• Variational and Symplectic Integrators. Symplectic in-
tegrators for the long time integrations of the solar system is well
known through the work of Tremaine, Wisdom and others. In
many problems in which the dynamics is delicate or where there
are delicate controls, geometric integrators can be useful.

• Other Structures in the Solar System.

As Lo and Ross [1997] suggested, further exploration of the phase
space structure as revealed by the homoclinic-heteroclinic struc-
tures and their association with mean motion resonances may pro-
vide deeper conceptual insight into the evolution and structure of
the asteroid belt (interior to Jupiter) and the Kuiper Belt (exterior
to Neptune), plus the transport between these two belts and the
terrestrial planet region.

The figure plots the (local) semi-major axis versus the orbital ec-
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centricity. We show the L1 (green) and L2 (black) manifolds for
each of the giant outer planets. Notice the intersections between
manifolds of adjacent planets, which leads to chaotic transport.
Also shown are the asteroids (blue dots), comets (red circles), and
Kuiper Belt objects (green circles).
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� “Petit Grand Tour” of Jupiter’s moons

• Construction of some new trajectories that visit Europa and Ganymede.

• Example :

◦ 1 orbit around Ganymede.

◦ 4 orbits around Europa, etc.
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• Idea is to use burns that enable a transfer from one three body
system to another.
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Petit Grand Tour movie
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� Lunar Capture: How to get to the Moon Cheaply

• In 1991, the failed Japanese mission, Muses-A (Uesugi [1986]), was
given new life with a radical new mission concept and renamed
as the Hiten Mission (Tanabe et al. [1982], Belbruno [1987],
Belbruno and Miller [1993]).

• We present an approach to the problem of the orbital dynamics of
this interesting trajectory by implementing in a systematic
way the view (Barcelona group and Belbruno) that the Sun-Earth-
Moon 4 body system can be modelled as two coupled 3 body
systems .

• Within each 3 body system, using our understanding of the in-
variant manifold structures associated with L1 and L2, we trans-
fer from a 200 km Earth orbit into the region where the invariant
manifold structure of Sun-Earth Lagrange points interacts with the
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invariant manifold structure of the Earth-Moon Lagrange points.

• One utilizes the sensitivity of the “twisting” near the invariant
manifold tubes to target back to a suitable Earth parking orbit.

• This interaction permits a low energy transfer from the Sun-Earth
system to the Earth-Moon system. The invariant manifold tubes
of the Earth-Moon system provide the dynamical channels in phase
space that enable ballistic captures of the spacecraft by the Moon.

• The results are then checked by integration in the bicircular 4-body
problem. It works!

• This technique is somewhat cheaper (18% less ∆V ) than the usual
Hohmann transfer (jumping onto an ellipse that reaches to the
Moon, then accelerating to catch it, then circularizing). However,
it also takes longer (6 months as opposed to 5 days).
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Movie: Ballistic capture

inertial
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Movie: Ballistic capture

rotating
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� Optimal Insertion into a Halo Orbit

• Halo Orbit Insertion goes back to the early days of L1 halo-
orbit missions (eg, Farquhar et al [1980] for the ISEE-3 mission
launched in 1978).

• We study optimal control in the context of mission design with
the aid of dynamical systems and invariant manifolds. In particu-
lar, we consider optimizing burns for halo orbit insertion of
Genesis type missions, although the methods are rather general.

• Low thrust and impulsive burn contexts are both important
and the techniques can handle either case.

• Optimization software coopt (COntrol–OPTimization) is used
to do an optimization of the cost function (minimizing ∆V )
subject to the constraint of the equations of motion . We
vary the number of impulses and also consider the effect of delaying
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the first impulse.

• coopt rather general software for optimal control and opti-
mization of systems modeled by differential-algebraic
equations (DAE), developed by the Computational Science and
Engineering Group at University of California Santa Barbara. It
has been designed to control and optimize a general class of DAE
systems which may be quite large. It uses multiple shooting and
SQP techniques to do the optimization.

• Due to the problem sensitivity and the instability of the halo
orbit, an accurate first guess is essential—provided by a high
order analytic expansion of minimum 3rd order using the Linstedt
Poincaré method (Simo, Howell and Pernicka, Chua and Parker).

• Simo et al, in conjunction with the SOHO mission in the 1980’s
were the first to study invariant manifolds of the halo orbit.
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58

• Stable manifold of the halo orbit–used to design the trans-
fer trajectory which delivers the Genesis spacecraft from launch to
insertion onto the halo orbit (HOI). Unstable manifold–used
to design the return trajectory which brings the spacecraft and its
samples back to Earth via the heteroclinic connection .

• Expected error due to launch is approximately 7 m/s for a boost of
approximately 3200 m/s from a 200 km circular altitude Earth or-
bit. This error is then optimally corrected using impulsive thrusts.
Halo orbit missions are very sensitive to launch errors .

• Objective: Find the maneuver times and sizes to minimize
fuel consumption for a trajectory starting at Earth and ending
on the specified halo orbit around the Lagrange point L1 of the
Sun-Earth system at a position and with a velocity consistent
with the HOI time.
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Halo Insertion Movie



Computational Science and Engineering

Parametric Study of the Optimal Solution

Influence of:
 Delay in TCM1
 Perturbation in launching velocity

Optimal solutions found for all cases

Number of maneuvers:
 Unperturbed injection velocity: 1
 Perturbed injection velocity: 2           
•

•

•
•
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